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CHAPTER ONE

INTRODUCTION

1.1 Problem Statement

The problem of estimating the angular location of d sources
using an array of m sensors is addressed. The sources are assumed
to be in the far field with respect to the physical size of the
array. The signals received by the sensors are generated by the
sources themselves. For this reason, the direction finding system
used in this work is classified as passive. The general system
configuration is shown in Fig. l.l.

It is assumed that the model which governs the signal received
at the iEE sensor is of the form

d N
y,(€.8) = k§1 5, (0)a, (8) +n,(t) ; 1=1,2,...,0 (1.1-1)

where Sk(t) 1s the compiex envelope of the EEE signal, 8 is the vector

T
g - [el’ 92,...,ed]

where the tEE entry 61 corresponds to the angular position of the
tEE source, ai(ek) is the response of the tEE sensor to the ksh
source, and ni(t) is the additive noise. This noise is the sum of
external and internal noise. External noise is assumed to be received
uniformly from all directions while the internally generated thermal

noise is assumed to be identically distributed in each of the m

channels.
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Fig. 1.1 Passive Direction Finding System



In this research the signals generated by the sources are
assumad to be narrowband. A signal is classified as narrowband
if its bandwidth is small compared to the inverse of the transit
time of a wavefront across the array. Given N snapshots of noise
corrupted data collected at the a sensors, the problem is to estimate

the angular position of the d sources.

1.2 Previous Results

The problem of estimating the bearing or directiom of arrival
(DOA) of radiating sources has occupied many researchers in the last
two decades. This problem has applications in areas such as sonar,
radar, radio-astronomy, and seismology. Also, the performance of
angle of arrival estimators plays an important role in determining
the ultimate capability of any surveillance system. Originally, this
problem was formulated in terms of the classical Bayesian and/or
Neyman-Fearson decision theories [1], [2]. Bowever, because this
approach suffered from several deficiencies, a variety of new techaniques
have been proposed in recent years. In this section we re?iew some

of these methods.

Maximum Likelihood and Least-Squares Estimates

Two very popular approaches for constructing parameter estimates
are the maximum likelihood and the least squares techniques. Applica-
tion of the maximum likelihood approach to the di.ection finding problem

is discussed by BShme [3]. Let

L= {y(60), 7,68, ooy y (6,01




denote the complex array data vector where(')r stands for the transpose
operator. A amaximum likelihood estimate (MLE) can be found provided both
the probability density £(Y|6) of the data vector Y is known and the

likelihood function
L(8) = log £(Y|9)
can b§ maximized over the parameters

T
84 (8, 8,,....8,1".

17 72

An estimate § maximizing L(E) over 8 is defined to be an MLE of 8.
Béhme points out that the MLE can be heavily biased. However, for
independent and identically distributed random variables y, (£,8),
yz(:,g).....ym (t,8), consistent MLE 5_ are asymptotically anormally
distributed and efficient. This means that the dis.tribution of
v (§ -~ 8) approaches the normal distribution with zero mean and -
covariance matrix given by the inverse of the Fisher information

matrix

3 taf(y,|8) 3 wf(y|® &

J'Eg{( 38 ) ( 38 ) }

vhere (-)!l stands for the Hermitian operator, Ee means expectacion with

respect to O and 98/38 is the columm vector with elements -8—33- .
- 1
An estimate of § can also be obtained using the leas. squares
approach. For the narrowband case, the data vector Y has the

following form

(1.2-1)

(L]
)
it
+
1=




where the (m x d) matrix A is the direction matrix whose columns
{.(ek), k =1,2,...,d} are the signal direction vectors for the d

wavefronts.

_SA(sl(t), 2.(€)seees sd(t)]T where sk(c) is the complex envelope of
the kt—h- signal. The (m x 1) vector N represents the additive noise
at the m sensors. In this approach one attempts to fit a signal
model to the data vector Y in the least squares sense; that is,

the error

s Jly-as?

is minimized by choosing S and 8 [4]. If we set the derivatives

of E with respect to the unknown parameters to zero in trying to
ninimize E, we realize that some of the necessary conditions are in
the form of nonlinear equations. Attewpting to solve this nonlinear
set of equations is computationally very involved. A different
approach to this minimization problem was suggested by several

authors [5 - 8]. The idea is to choose values of S based on some a
priori knowledge or based on some preprocessing and find the associated
3 that minimize E. Then the values of S can be altered to find new
values for 9 that give a lower minimum for E. This process is repeated
until a local minimum for E is found, and the corresponding S and §
are the estimates of the unknown parameters. This is essentially

a search procedure. H. Wang [9] comments that if no a priori
information is available, the local minimum that is first reached may

give an estimate which is far from the true values. Both approaches




discussed above prove to be computationally very involved tasks.

Beamforming
Beamforming is one of the oldest ideas in array processing

for determining the bearing of a target. A simplified block diagram
of a delay-and-sum beamformer is shown in Figure 1.2. The idea {s to
align the propagation delays of a signal presumed to be propagating
in a direction -k so as to reinforce the signal (10]. For example, if
the sensor delay ri; i=1,2,...,m, is ideally adjusted to compensate
for the signal delay (Ei * k)/c, where Ei is the spatial location of
the 1££ sensor and ¢ is the speed of propagation, the signal power
in the beanm is mz times that measured at each sensor while the beam
nolse power is increased by only a factor of m (assuming the noise to
be uncorrelated from sensor to sensor). Dudgeon [11] explains that
the reason for studying the formation of beams from an array of sensors
is to use the signals received by the sensors in a phased manner so
as to preferenzially detect signals coming from a particular direction.
In addition, by averaging over many sensors, the signal to noise ratio
(SNR) 1is increased to aid in the measurement of signal parameters [ll].
The delay~and-sum beamformer consists of computing the energy
in ﬁhe beam for many directioms of look by manipulating the delays.
Maxima of this energy as a function of k will correspond to the location
of the sources. Observe that this prucedure requires computation of
the energy in the beam at every direction of look. For this reason,

this approach can be classified as a search procedure. The energy
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in the beam when steered in direction k is given by
H
P(k) =A RA (1.2-2)

H
vhere R AE(YY ] is the spatial correlation matrix of the sensor outputs
and A is the direction of look vector with elements A - exp|§ -ZAI- k °§1]

where A {s the signal wavelength. Assuming the noise to be spatially

white, the power in the beam when steered toward the source is

- min 2 2
P(k) = m o, +mo (1.2-3)

2 2
where os and cn denotes the power levels of the signal and noise.
The value of k which yields the beam power given in (1.2-3) is also
known as the Bartlett estimate of k. For this value of k, P(k) is

maximized.
The resolution of this approach is determined essentially by the

beam pattern of the array of semsors. A typical beam pattern for
a delay - and - sum beamformer is shown in Fig. 1.3. Using this classi-

cal method, increased bearing estimation accuracy can only be obtained

by increasing the aperture of the array. This solution is of limited

utility as it means increasing the physical size of the array.
Don H. Johnson [10] observed that a source having a well defined bear-

ing appears to be coming from a dominant but diffused direction as well

as from false directions coiresponding to sidelobes. The sidelobes

are due to equal weighting assumed for each sensor output. This

approach was shown to be incapable of resolving bearings spaced more
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closely than the Rayleigh limit regardless of SNR [12]. This minimum

source separation below which sources cannot be resoclved increases as

the magnitude of the coherence between the sources increases.

Adaptive Beamforming

A way to alter the performance of the beamformer is to weight the
sensor signals individually before summing them as shown in Figure 1.4.
To achieve higher resolution modern spectral analysis algorithms are
used which determine the weights by utilizing the data measured at
the sensors. For this reason such systems are referred to as adaptive
beamformers. The problem of determining the sensor weights so that the
beam pattern has some desired characteristic is the same as designing
a good data window for spectral estimation, or designing a prototype
low-pass filter for use in a digital filter bank [11]. The sensor
veights can be adjusted to maximize the SNR. This is analogous to
designing a Wiener filter given the spectral estimates of the signal
spectrum and noise spectrum (11]. J. P.Burg [13] notices that this
filter will have a frequency response which passes those parts of the
spectrum where the SNR is high and rejects those parts where the SNR
is poor. This adaptive approach performs essentially the same as the
delay-and-sum beamformer when the source angle ssparation is less than
the beamwidth. Although this approach has better resolution capabilities

than the conventional Fourier transform, it is stlll considered poor.

Spectral Estimation

The propagating waves are assumed to generate & homogeneous random

field (i.e., a field that is space stationary). In this case a

10
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spectral representation for the field exists, similar to that for
stationary random processes, which consists of a superposition of
traveling waves [14]. This, in effect, ;xplainl the equivalence
between the problem of determining the bearing of a radiacing
source with an array of sensors and the problem of estimating the
spectrum of a signal. D. Johnson gives an excellent review of this
equivalence [10].

Linear prediction techniques can also be applied to the directiom
of arrival (DOA) estimation. A tutorial review of linear prediction
is given by J. Makhoul [15]. Ulrych and Clayton [16] as well as Tufts
and Kumaresan (17] have applied the forward-backward linear prediction
method to the narrowband linear array case. Among the most well known
high resolution spectral estimation methods are Capon's maximum likeli-
hood, Burg's maximum entropy and the linear predictive method. We
shall give a brief discussion of these three techniques as applied to
DOA estimation.

Capon's maximum likelihood method does not make use of the
standard MLE. Instead, a constrained optimization problem is solved.
The direction of look A is found which yields the minimum beam
energy P(k) given in (1.2-2) subject the the coustraint QFE = |, where
E represents an ideal plane wave corresponding to the direction of look.
This constraint fixes the processing gain to 1 for each direction of
look. Minimizing the beam enargy tends to reduce the contributions

to this energy from sources and noise not propagating in the directiom of

12
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look [10]. Por this reason S. R. Degraaf and D. H. Johnson
called this approach minimum energy adaptive beamforming. Using
the Lagrangian approach, the solution of the above stated optimiza-
tion problem is given by
-1
AP E | (1.2-0)

eRle

where R is the spatial correlation matrix of the data vector Y
which was defined previously. This approach is classified as a
search procedure since the vector A has to be computed for each
direction of look. When the noise is assumed to be white and the

beam is steered toward the source, the beam power estimate is

vhere oi and c: denote the power levels of the signal and noise.

Burg (18] suggested using the principal of maximum entropy to

estimate the DOA's. For a given directiom of look, the entropy
Ha= J n P(k) dk (1.2-5)

of the power spectrum P(k) is obtained. Burg has shown that
maximizing the entropy is equivalent to choosing the "most likely"
spectrum. For the case of an equally spaced linear array, the
maximum cn:ropy’solution was shown to be equivalent to the linear

prediction solutionm.

13




S. W. Lang and J. H. Mcllelan [19], among others, applied
linear prediction (LP) to array processing problems. The idea is
to estimate the output of the 1th sensor as a linear combination of the
other sensor outputs

7,(,8) = - § uy (8. (1.2-6)
2 e 1 ,

The linear predictive coefficients are obtained by again solving a
constrained optimization problem, the constraint being u, = 1. Once
these coefficients are known, the power spectrum P(g) is obtained.
The power spectrum P(k) is computed for different directions of look
and the source bearings correspond to the maximas. Observe that

this i{is also a search procedure. An open question in the LP approach
is the choice of £, 1.e. the choice of the sample to be predicted by
the other samples.

The three methods described above are capable of resolving closely
spaced source bearings if the SNR 1is large enough. Using incoherent
sources and a linear array containing 10 sensors, it was shown that
the linear prediction processing algorithm is uniformly the most
capable of resolving closely-spaced signals [12]. Thus, these methods
have better resolution capabilities than the beamformers presented
earlier. However, one major drawback of these high resolution pro-
cedures is they are computationally very complex due to their
sesarch nature. Finally it should be noted that spectral estimation

methods are not applicable to the DOA estimation

14

i e £ s s



——

y e o

problem when the source signals are correlated because the wave-

field generated by correlated signals is not homogeneous.

Signal-Subspace Processing

In recent years, there has been a great deal of interest in
spectral estimation procedures based on an eigenvalue-eigenvector de-
composition of the spatial correlation matrix. In the mathematical
literature, this is known as principal component analysis. R. Kumaresan
[20] points out that principal component analysis involves linearly trans-
forming the data along the first few principal eigenvectors of the
covariance matrix of the data (21]. The original work in this area
is due to H. Hotelling [22]. C. R. Rao [23] showed that several
problems in multivariate analysis have solutions based on calculating
the first few e{genvectors of a correlation matrix. In array pro-
cessing, interest stems from the fact that there are relations between
the eigenvectors of the spatial correlation matrix and the directions
of arrival. Pisarenko (24] was the first to realize the important prop-
erties of the eigenvectors of the correlation matrix. This idea was
then vigorously developed by Cantoni and Godora [25], Owsley [26],
Liggett [27], Reddi (28], Schmidt [29] and Bienvenu [30].

All these signal-subspace approaches assume the background noise to

be independent from sensor to sensor and the spatial coherence matrix

to be the identity matrix. It should be noted that when the noise

is nonwhite but has known covariance, the problem can still be handled

through prewhitening. A Paulraj and T. Kailath (31] proposed a
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solution to the unknown noise covariance problem when the noise
field is {nvariant under different array positions (i.e., the noise
covariance matcix is unchanged). Situations where this assumption is
valid are not uncommon in sonar applications.

We now present the building block of a standard eigenstructure
algorithm. Using (1.2~1), the spatial covariance matrix can be

written as

R = E[Y 7] = asa® + o%1 (1.2-7)

where S is the covariance matrix of the signals s(t), i.e.
H
S = E(s(t) s (v)],

02 is an unknown constant representing the noise power at each sensor,

and E(*) denotes expectation. Let (kl > A e > Xn} and

27"
{31.‘52. cees gm} be the eigenvalues and the corresponding eigenvectors
of R. One can show that if S is nonsingular (i.e. thesource signals are
not coherent), and if the number of sources d is less than the number of
sensors m, then

2

1) The mianimum eigenvalue of R is 0° with multiplicity (m-d), i.e.

2

2) The eigenvectors corresponding to the minimal eigenvalues
are orthogonal to the columns of the matrix A or the signal

direction vectors. In particular,

16




BB e it

{84410 &gapreeor ot LiaL, w=1,2,....d} (1.2-9)

where the symbol | denotes orthogonality.
The key steps of this algorithm are as follows. First determine
the aumber of sources d using (1.2-8). Next find the noise subspace
as the space of the eigenvectors corresponding to the smallest
eigenvalue of R. Finally, the desired direction vectors (hence the
DOA's) are found by searching the array manifold to locate those
vectors that are orthogonal to this noise subspace [29]. Like earlier
approaches, these signal-subspace techniques are also search procedures.
The above algorithm assumes that we have perfectly known eigen~
vectors and eigenvalues. In practice, however, R has to be estimated
from the array data vector Y. Due to errors in estimating R from
finite samples and because of finite precision arithmetic, the
eigenvalues and eigenvectors will be perturbed from their true values.
There is, therefore, zero probability that the smallest eigenvalue
of R will have multiplicity (m~d), i.e. the small eigenvalues will all
be different with probability one. A more sophisticated approach, based
on statistical considerations, is needed to determine the underlying
multiplicity [32]. The problem of estimating the number of sources
present is an on going one. Many solutions have been proposed but
none is fool proof. Liggett [27] was the first researcher to use
eigenvalues of the estimated R to deterwine the number of signal sources.
He fitted a multivariate signal model to the observed data. Bartlett

(33] and Lawley [34] developed a procedure based on a nested sequence

17

. ———




of hypothesis tests. For each test the likelihood ratio statistic
is computed and compared to a threshold. The hypothesis accepted
is the first one for which the threshold is crossed. The problem
with this method is the subjective judgment required for deciding on
the threshold levels [32]. One of the most celebrated approaches
to this problem is the Aikake information theoretic criteria (AIC).
The advantage of this approach is that no objective judgment is
required in the decision process [35]: The minimum description
length (MDL) is another approach that does not require objective
judgment. Recently, a new approach based on the AIC and MDL has been
proposed by M. Wax and T. Kailath [32]. They view the problem as a
model selection problem and then apply the AIC or MDL for model
selection.

To close this subsection we present one of the most promising
subspace approaches, called Multiple Signal Classification (MUSIC),
which was proposed by Schmidt (36]. MUSIC can be shown to provide

asymptotically unbiased estimates of

1) uumber of incident wavefrounts present

2) directiouns of arrival

3) strengths and cross correlacions among the incident waveforms.
4) noise/interference strength

$) polarizations

Given the m x m spatial covariance matrix R of the data vector Y,

Schaidt showed that the eigenvectors associated with the minimum

18
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eigenvalues of R are orthogonal to the space spanned by the columns
of A, {.e. the signal direction vectors. Thus, Schmidt proposed
searching in the a(8) continuum for the values of a(8) which will

maximize the expression

P(8) =

.“ce)slsg o (1.2-10)
3 NN =
where EN is defined to be the m x (mw-d) matrix whose colummns are the
(m~d) noise eigenvectors. These new eigenvectors are the eigenvectors
corresponding to the (m-d) smallest eigenvalues. Once the signal direction
vectors are known, the DOA's can then be obtained. Note that MUSIC
necessitates searching. Schmidt generalized this approach to include
the added complexity of signal polarization.

Schmidt compared MUSIC with the conventional beamformer, Capon's
maximum likelihood and Burg's maximum entropy approaches (See Fig. 1.5).
MUSIC was found to have superior bias, error variance and resolution

performance. However, like all the earlier search methods, this super-

resolution approach is very inefficient computationally.

Nonsearch Procedures
Currently, nonsearch procedures are being developed (37], [38],
(39]. These algorithms seem to have important advantages over search
procedures. Among these advantages are [37]:
1) They are computationally less complex because a search procedure
is not needed.

2) These algorithas do not require knowledge of element characteristics

(i.e. directional pattern, gain/phase response).
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3) They do not require a calibration of the array. This

completely eliminates need for storage of the array manifold

which can be very large for multidimensional problems.

This dissertation concerns itself with these newly developed
nonsearch procedures. Although the techniques are developed for
narrowband signals, wideband signals can also be handled by decompos-
ing them into narrowband signal sets using comb filters. A discussion
of DOA estimation of wideband sources is given by H. Wang and M. Kaveh

[40].

1.3 Research

Nonsearch methods for solving the problem of direction finding
with a sensor array in a multiple source environment are the main
topic of this research

Chapter 2 is devoted to formulating a generalized approach for
these nonsearch procedures. The generalized approach comsists of
applying an operator to the received signals in order to form a
matrix pencil M-AN. The rank reducing values of A are shown to con-
tain the information needed to estimate the angles of arrival. The
pencil theorem proposed in this chapter establishes the relationship
between the rank reducing values of A and the functional form f(¢i)
generated by the operators applied to the measurements. When the
matrices M and N are square, the rank reducing values of A are the

generalized eigenvalues of the pencil M=-AN. Two methods are proposed
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to compute these values of A when M and N are nonsquare.

Several different nonsearch procedures are special cases of the
generalized approach. These methods differ primarily depending upon
the operator used. In chapter 3 two different techniques are pre-
sented and formulated in terms of the gensaralized framework. The
first, ESPRIT, makes use of a phase delay operator while the second
makes use of a summacion operator.

In chapter 4 the moving window operator isranalyzed in detail.
This operator is also formulated within the generalized framework
and is shown to hold for cohé?ent gources. At first the moving
window is presented for the case of deterministic signals. In
section 4.1-2 the moving window is shown to be applicable to the
zero mean random signal case. In section 4.£ the moving window oper-
ator is applied to a rectangular planar array. As before, the ramk
reducing numbers of the matrix pencil M-AN contain the information
needed to locate the sources. Sections 4.3 and 4.4 present Prony's
and Pisarenko's algorithms. Their relationship to the moving window
is developed. In section 4.5 computer simulation results are pre-
sented. The estimation accuracy of the Prony, Pisarenko, and moving
vindow methods are evaluated in terms of bias and variance based on
several Monte Carlo runs. The moving window is also compared to ESPRIT.

Finally, a summary and suggestions for future work are given

in chapter 5.
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CHAPTER 2

THE GENERALIZED APPROACH

As discussed in the introduction, several high resolution
spatial processing algorithms such as the maximum likelihood method,
maximum entropy method, linear predictive method, and MUSIC have been
proposed for estimating the directions of arrival of incoming signals.
These techniques are essentially search procedures and, because of
that, are computationally very complex. Nonsearch procedures have
recently been proposed to alleviate this computational burden.

In this chapter a generalized formuacion is proposed for these
newly developed techniques. The pencil theorem which forms the
foundation of this work is developed in section 2.l1. This theorem
states that the rank reducing values of a certain matrix pencil con-
tain the information needed to estimate the angular location of the
d sources. Section 2.l discusses the procedures one can use to
obtain these rank reducing numbers.

2.1 The Pencil Theorem

The basic problem under consideration is that of estimating the
angular location of d sources given measurements from an array of m
sensors. The measureuents are modeled by a linear combination of d
exponentials whcese exponents j¢1.i ® 1,2,..., d contain the informa-
tion about the angular location of the sources. The generalized
approach 1is based on the concept of a matrix pencil which is defined

as follows (41]. Let M and N be two k x L matrices. Also, denote
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the space of complex numbers by ¢. The set of all matrices of the
form M - AN with A\e¢ is said to be a pencil.

The matrices M and N are required to have the decompositions:

M = EF and N = EDF (2.1-1)

vhere E is a k X d matrix (k > d), Fis a d x 2 matrix (2 > d),
D is a d x d diagonal matrix, and E, D, and F are all of rank d.
In addition, the 1&52 entry of the diagonal matrix D is required to

be of the form ‘

] dii - f(@i) = f[g(Si)]; 1i=1,2,...d (2.1-2)

where ei is the angular location of the LEE source. The matrices
M and N and the function £(°) are determined by the operator T{-}
applied to the signals received at the m sensors. In general, different
approaches may employ different operators T{-}.

The following theorem establishes the relacionship between the
values of A for which the rank of the pencil M - AN decreases by 1
and the functions f (¢) which contain the directions of arrival (DOA)

information.

Pencil Theorem:

Let M - AN be a matrix pencil vhere M and N have the decompositions
M = EF and N = EDF

% as cited above. Then, the values of A which decrease the rank of the

pencil M - AN by 1 are given by

{
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-1 -1
11 = {f(¢i)} - {f[z(ai)]} ; 1=l,...,d.

Proof:

Given the matrix pencil M - )N, it follows thact

M - AN = EF - AEDF = E(I - AD)F (2.1=3)
where the 1:!.2 entry of the diagonal matrix (I-AD) is given by
{a- lD)lu -] - lf(@i).

If A = {f(¢1)}-1. then the iﬁ column of (I -~ AD) becomes zero. The rank
of (I - AD), denoted by r(I - AD], is thus reduced by ! to (d=i). In

general
£(M-AN] = £{E(I - AD)F] = min {t[E], r[I- AD], r[Fl}.

However, by assumption
r{E] = r[F] = d.
Therefore, the rank of the pencil M - AN is decreased by 1 when
A = (£GOY G 1e1,2,000, (2.1-4)

2.2 Evaluation of the Rank Reducing Numbers

The procedure used to compute the A 1'3 is now discussed. It is
shown to depend on whether M and N are square or non-square matrices.
Denote the determinant of a matrix M by det(M), and the SPace of

complex numbers by ¢. In case M and N are SQUARE matrices, the
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generalized eigenvalues (G.E.) of the pencil M - AN are defined to

be all the elements ) 1e¢ of the set A(M,N) defined by
AMM,N) = (X ¢ sdet -1, N) = o}.

When the G.E.'s are distinct, the rank of M -~ AN is reduced by 1 whenever
A is set equal to one of the G.E.'s. Therefore, these G.E.'s are the
rank reducing numbers of the square matrix pencil M - AN.

If M and N happen to be NONSQUARE matrices, then either one of

two approaches can be used to determine the rank-reducing numbers XA ¢

1. The problem can always be reduced to a generalized eigenvalue problem

by premsltiplying the rectangular matrix pencil M -~ AN by HE

H
Note that (*) denotes the Hermitian operator. We obtain
P - ANy = - ey, (2.2-1)

Observe that Hah - XMH'N is a aquare matrix pencil. It follows

from (2.1-1) that

My - ufy -« @nien - 2@t
« P EREF - AFEREDE

- FRefe (1 - AD)E. (2.2-2)

Note in the above equation that we still have the decomposition
required by the pencil theorem. The matrices FB'EEE and F are both

of rank d. Because (I-AD)arises inboth (2.l-3) and (2.2~2), the
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o
zeneralized eigenvalues of the matrix pencil H#H - MM are idenctical

o those obtained in (2.1-4) for the matrix pencil M-)AN when M and N

are square.

2. A Grammian approach can also be used to decerzine the /\i's. Denote

g8

the i== column of M - M by (M - nx)i. Also, define the inner product

of two veczors X and Y by

<Xy ¥ > = 7. (2.2-3)

This approach consists of checking the dependence/inderendence of the
cclurms of the zatrix peacil M - AN. 7o this end a Gram matrix G

. . .th .
whose ij— entry is given by

G,, = <(M - AN)

13 M - X)) .>

i’ 3
is formed. Computing the deterzinant of G results in a polymomial P(})

whose non-zero zeros are the rank-reducing numbers of ¥ - AN.

Having shown how the rank reducing aucbers of a zatrix pencil can
be deterzined, we now show that different nonsearch procedures for DOa

estimation can be formulatad within this generalized framework.
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CHAPTER 3
VARIOUS OPERATORS FOR USE IN

THE GENERALIZED APPROACH

The rank reducing numbers of the matrix pencil M - AN will be
functions of the angular locations of the d sources provided the
tsh diagonal element of the macrix D has the functional form given
by (2.1-2). This functional form, however, is not dictated by the
location of the sourcas but by the operator used to.procesa the data
received at the sensors. Different methods formulated within the
framework of the generalized approach use different oprators.

In this chapter two direction of arrival escimation techniques
are presented. The first, ESPRIT, which makes use of a delay oper-
ator, is discussed in section 3.1. The second approach, presented
in section 3.2, is a generalization of a system identification scheme
originally proposed by Jain {42]). This scheme uses a summation oper-

atot L

3.1 Phase Delay Operator (ESPRIT)

ESPRIT [37] is a subspace approach to direction of arrival estima-
tion wvhich employs a planar array of arbitrary geometry composed of m
matched sensor doublets whose elements are translationally separated
by a known constant displacement vector A (See Fig. 3.1). In terms
of the generalized formulation, it will be shown that ESPRIT uses a

phase delay operator which results in the function

~36,
£6) =e 1. (3.1-1)

28




!

: |

P :
i !

! :‘ SOURCE 2
$ ‘ SOURCE 1

p

3

]

4

1

g

!

!

RECEIVER 1

}t Fig. 3.1 Mulciple Source DOA Estimation Using ESPRIT.
},

Y (From (371)

4

29




e

The array of sensors is conveniently described as being comprised of
two subarrays X and Y, identical in every aspect although physically
displaced from each other by a known displacement vector A. Assume
there arz d narrowband stationary sources located at azimuthal angles
61. i=1,2,...d, wvhich are impinging on the array as planar wavefronts
and emitting signals whose complex envelopes are denoted by sk(t). k=
t, 25...5d. To be able to solve for the DOA's d has to be less than
m. The signal received by the tEE sensor is the superposition of d
impinging wavefronts plus zero-mean additive noise. Define ai(ek) to
be the relative response of the 122 sensor at either subarray to the

kEE source, w., to be the center frequency of each of the spatial

0

sources, c to be the speed of propagation of the plane waves, and o (t)

i

and ny (t) to be the additive noise at the elements in the tEE doub-
i

let. Then the ocutput of the tsﬁ sensor can be expressed as,

d
x, (c,8) = ] s,(c) a (8) +1 ()

k=1 i
©8) = 5 a0 a @ ® ®)
y,(c,8) = ) s (t) a e +n_ (t
1 A A A vy
where 8= (61, 62,...,94)
“o

and o = g(Bk) = < Asin B+ (3.1-2)
Let

X0 = (%, (5,9), x)(€,8)erny Xy (£,0)]

11(0) = [7,(6,8), 7,(t.0)eens To(t0)]




-

-

sty

be simultaneously sampled data vectors of both subarrays. Similarly,

define

5T(e) = [8,(0), 8,(8),eens 3,(8)]
T
g (c) = [nxl(c). nxz(t).--.. n‘m(t)]

g:(t) - rny1<c). ny2<=),....nym<c)1.

Define A to be the m x d direction matrix whose columns are the signal

direction vectors for the d wavefronts defined by

af (8) = [a,(8))+3,(8)1-0s a_(8)1; kel,...d.

Also, define ¢ to be the diagonal matrix of the phase delays between

the doublet sensors given by

jo ie ¢
¢ = diag [e 1. e 2..... e d]. (3.1=3)

It follows that

X(t) =A S (v) +n (v)

n
-

Y(t) = A $ S(¢t) +gy(t). (3.1-4)

As a firsé step in this algorithm the minimum description length
(MDL) criterion [32] is used to estimate d, the number of sources.
Using both this estimate and the assumption that the noise is white
and uncorrelated from semnsor to sensor, the maximum likelihood estimate

of the noise power is obtained. The matrix
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pencil C-AB is then formed where C is the autocorrelation of the data
received by subarray X and B is the cross~correlation matrix between
the data received at subarrays X and Y. Note that C and B are

square correlation matrices. Assuming that S(t), n (t) and gy(t) are

statistically independent, then
34
C = E[X(t) X (1))

= E[(A S(8) + 3, () (A S (&) + 3, ()]

H
~asal+r O (3.1-5)
-x—X
vhere
s = E[s(2) §7 ()] . (3.1-6)

is the d x d correlation matrix of the signals s(t),

’

R, o (0) = Eln(c) a_ (o)
- =X

is the d x d correlation matrix of the noise and E(°*) denotes the

expected value.

Let

E=AS and F = AP,

Using these expressions C can be rewritten as

(3.1-7)
C=EF+R . (0
~R=X

Define

-3¢ i [ -3¢
Dol adtag e ! e Z..e 9. (3.1-8)
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The matrix B can be expressed as
B = E[(X(t) !,B(t)]
= ELAS(®) + p () (MS(e) + n(£))"]
castMB i (0
nn

= EDF + Rn a © 3.1-9)
-y

where
H
R (0) = E[n_(t) n_ (t)].
n_n
1 ﬁ
Since the noise components are assumed to be white and uncorrelated from
sensor to sensor, it follows that
R (0) =c’LandR__ (0) =0
nn nn *
“x=x o

Therefore,

C - AB = E(I - AD)F + o2I. (3.1-10)
Let

2
M=(C-01 =EXM®rE)] ~ 21 = EF

and

N = B = E(X(t)Y0(c)] = EDF. (3.1-11)
Subtraction of 02 I from both sides of (3.1-10) then yields

(C - 9I) - AB = E(I-AD) F = M - AN. (3.1-12)
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Observe that the matrix pencil formed in this manner has the decom-
position required by the generalized formulatiom.

Recall that the m x d matrix E is the product of the direction
matrix A and the signal covariance matrix S. The matrix E is required
to be of full rank. This, in turn, requires that the matrices A and
S both be of rank d. The m x d matrix A 18 of rank d as long as the
signal angles of arrival are distinct. However, the rank of S will
be less than d when the signals are coherent. This explains why
ESPRIT fails in the case of coherent gsignals. The matrix F is of full
rank, as required, since it is the matrix AH. The diagonal matrix
D given in (3.1-8) is also of rank d.

As mentioned in (3.1-1) the phase delay operator of ESPRIT results
in

£,) = ey
From the pencil theorem it follows that the G.E.'s of M=AN are related
to £(¢,) by

3o,

IR ICRY: Lot 1 e1,2,...,4.

Ouce the G.E.'s are known, the DOA's can be obtained from (3.1-2) using
the relation

C
8, = arcsin {-3 ;;K lnki}.

Note that the argument of arcsin {s real since in Xi is purely imaginary.
It can be concluded that this nonsearch procedure is one application

of the generalized approach. The operator used by ESPRIT is the phase
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delay operator which results in the functional relationship given
in (3.1-1). ESPRIT has all the advantages discussed in the intro-

duction, i.e., speed, storage, and indifference to calibration.

3.2 Summation rator
In this section we generalize a system identification scheme first
proposed by V. K. Jain [42]. In this generalization a linear array
composed of m identical ommidirectional sensors with uniform spacing
4 13 used to estimate the direction of arrival of far field point
sources. Assume there are d < m/2 narrowband deterministic sources
with spectra centered at wg and locatecd far enough from the array
such that their wavefronts impinging cn the array are planmar. ek is
the direction of arrival of the kth source and ni(t) is the additive noise

at the i;h" sensor. Additive noise is present at all m sensors. The signal

received at the ich sensor is expressed as

(D
d j— A(i-l)sinek
7, (6,8) = ] s (t) e

+ ni(:); {=1,2,...,m
k=1

As before, sk(t) denotes the complex envelope of the signal emitted
by the kt—h source.

For a reason which will become apparant later the i& measurement

Yi(:.g) is weighted by a known decaying exponential e-b(i-l). The
weighted signal is given by

-b(i-1

w (6,8 = e Dy (.0
]
d JT Al sty
= 1 os 0 G ko@D o).
k=1
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w
6, = 8(8,) = exp [-b + j -CQA siné, | (3.2-1)

Hence, wi(t,g) can be expressed as

d
W = T s (0@ 4 A

n, ().
kel 1

Assuming the signals to be determipistic and the noise to be zero

means x, (¢,8) is defined as

6 § (1-1)
x, (€,8) = Efw, (c,9)] = kgl s, (8) (88 )17, (3.2-2)
Define x,(i,t,8) as follows
X, (1,6,8) = x,(£,8) ; 1=1,...,m. | (3.2-3)

A vector 51. whose tEE entry is given by xl(i.t.g), is then formed

as indicated below (See Fig.3.2),

_x_f - {xl(lnt’_e.)r xl(ZI:D_e_)""! 31(“1,:,_6_)} . (3.2-6)

As in previous techniques the number of siznals, d, is estimated.
Baving an estimate d, a set of (d+l) vectors gp, p=1,2,...d+1 {s
created by operating successively (p~l) times on 51 with the summation
operatur, § (*). For example, the elements of tae vector X, or
xz(J.t.Q).z-Jj = 1,2,...m are obtained as shown below:

m

x,(3,t.8) = 9.-2-3 x (L, e 8. (3.2-5)
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Using (3.2~2) and (3.2-3), (3.2-5) can be rewritten as

a d d s8,(t) m
(2-1) % L
x,(3,t.8) = I 1 s (c) (g(8)] ) Yo (g(®))
2 1=y kel * . o1 8 gy Ok
d s, (t) a -1
% [} 2
- — (] (g(8))] Y [8(8,)1°}
w1 8(8) zzo k gmg
- (m+l) - b
) <21 s, (t) {1 [s(ek)] ‘1 (8(8)]
k=1 s(ek) I - S(Qk) 1l - S(Gk)
d s () d s (t) o
k @3- k (g(®)1. -
- c——— [3(6 )] - ————— k
el l-g(Sk) k kzl l—g(ek)

Similarly, the elements of the vector 53 or x3(j,t,2) = 1,2,...,m

are obtained by using the summation operator on %.

m
x,(3,t,8) = x,(2,t,9)
33,08 !,Zj ALt

m d

gy k=1 17800 t=1 k=l

d s (¢) _ d s, (t)
= y ._k....____. [g(ek)](j 1) - ; k

. . C1CH )
kel (l-g(ek)]z kel [1-g(ek))2 k

] e (a6 1"
- —— (m=-j+1) [g(6,)] .
kel l-g(ﬁk) k

This procedure countinues until the vector _15d +1 is obtsined. Define
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a
(3 = 5 (m=i+l)
Le]

m
Cz(j) - Zj cl(z)

‘ m
¢, (=5 c, ).
d-2 Lej d-2

The elements of §d+1' or xd*l(j,t,g). are given by

o
X1 (3:8:8) = lzj x4(L,t,8).

Using (3.2-6) expression (3.2-7) becomes

sk(t)

(4=
(a(e)]
1 (-ge)d

d
xd+1(j't'9') - kz

d s (t) m d s, (t)
-] —E—— o1 - 7] —*
kel [1-gi8))) k=l (1-g(8,)
d
) z Sk(t)

c,(§) (831"
kel [1-g(8)1972 ! k

d sk(t)

., C,(3) [g(8)1"
kel (1-g@ 1% 2 k

d Ik(t)

- C,_,(3) (881"
o [gop] 2 k
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——— —v
4

In general, the 155 elenent of the qEE vector has the following form

d s, (t)

d
(88197 - | nGi.eimey (gee )1

b 3 (j:tbg) - -
4 k=l [1-g(8,))%"! kel

(3.2-8)
vhere h(j.t.u.ek) is a function containing all the terms multiplying

[g(ek)]u. Assune that the weights are chosen such that Ig(ek)l“ = ¢ <<,

Note that
Ig(ek)l“ = exp(~-bm) = ¢.

Therefore,

bs~-{n £,
o

Assuming b 1s chosen such that the terms involving [s(ek)]'|l are negligible
with respect to the first term in the right side of (3.2-8), xq(j.:,gp

Q™ 1,2,0.05d+] and j = 1,2,...,m can be approximaced as follows:

sk(t)

d j-1
x (e85 ) (881" . (3.2-9)

k=1 [1-g(e 1%

As a parenthetical note, it is pointed out that the above result is
obtained with equality for a hypothetical array containing an infinite
nusber of sensors. Then the upper limit in the summation operator is

» and the terms including [g(ek)l" do not appear. However, even in the

case m = », this cechnique requires the measurements to be veighted so
that terms involving the summation operator couverge.
Using the vectors 51; 1s1,2,..., d+l, the matrix pencil M-AN is formed

where the rectangular matrices M and N are defined to bde
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2 =3 +1 . (3.2-10)
] J’ i
1 ... 1
j 88  8(8) ... &
‘ 32(61) 32(92) gz(ed) (3.2-11)
E=
m-i m-i m—1.
8 (61) g8 (8 ... g (8
d h— -
P and
' -
s, (v) al(t)/l-g(el) ceee sl(t)/il—g(el)]“".1
d-1
s, (¢) s, (t)/1-g(8,) .... s,(t)/[1-8(,)]
2 2 2 2 2 (3.2-12)
F= .
sd(t) sd(c)ll-g(ed) ceee sd('t)/[l.-g(ed)]“l-1
L o
‘ Using the above matrices, the matrix M can be decomposed as

M = EF. (3.2-13)




e

Similarly, dafine the diagonal matrix

1 seess

1, 1
D-ds lmEy =@ ey

It follows that N can be decomposed as

N =EDF. (3.2-14)

Using the decompositions (3.2-13) and (3.2-14) it is seen that the
matrix pencil generated by -this approach takes the required form

given in (2.1-3). Provided the directions of arrival are distinct, E
and F are of full rank. Consequently, the summation operator approach

generates a matrix pencil that satisfies the requirements of the pencil

theorem.
In the summation operator approach the itEE entry d11 of the matrix D
is given by
4 = 1
11 " 1T-g(B) °

In terms of the generalized formulation

1 1
£(8,) = - il =
i 1-¢1 1-3(61)

I.Z,I'c.d.

The values of A which decrease the rank of the pencil M - AN by 1 are

given by (2.1-4) or

-1 . im -
ki - {£(¢1)} = 1-g(8,) ; 1=1,2,....d. (3.2-15)

Because the matrices M and N are not square in this approach, the

Ai's can be obtained by computing the G.E.'s of the square matrix pencil
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given by (2.2-1). Alternatively, the Gram matrix approach can be
used to obtain these rank reducing numbers.

Jain's system identification scheme has been generalized to handle
the direction finding problem. It is shown that this method, like ESPRIT,
is an application of the ganeralized approach. This scheme makes use
of the summation operator. Being a nonsearch procedure, it has all the
advantages ESPRIT presents.

There {s still another operator, the moving window operator, tao be

discussed in greater detail in chapter four.
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CHAPTER 4

THE MOVING WINDOW OPERATOR

Two operators, the phase delay operator and the summation opera-
tor, were presented in chapter three. Both methods were formulated in
teras of the generalized approach. Being nonsearch ptoccdures.‘chese
methods possess the computational and storage advantages discussed earlier.
Eqw.ver, the ESPRIT method that makes use of a phase delay operator fails
for coherent sources. The summation operator, on the other hand, required
a weighting factor to approximately eliminate terms that would have pre-
vented the macrix decomposition required.

In this chapter another operator is presented. This operator, the
moving window, is formulated within the generalized framework and is
shown to hold for coherent sources. This approach provides asymptoti-
cally unbiased estimaces of the angles of arrival. Section 4.1 intro-
duces the moving rectangular window for the case of deterministic sig-
nals. In subsection 4.1-1 the case of a singular signal covariance
matrix i1s analyzed. The rectangular moving window is then applied to
the zero-mean random signal case in subsection 4.1-2. 1In section 4.2
the moving rectangular window is generalized to a rectangular planar
array. Sections 4.3 and 4.4 present two well krown methods, Prony's
and Pisarenko's mathods [42-46). . Their relaticnship to the moving rec-
tangular window is developed. A comparative performance based on com-

.

puter simulation of the three methods is given in section 4.5.

4.1 The Moving Rectangular Window

In this section a nonsearch procedure is presented for azimuth-only
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DOA estimation of far field point sources. Consider & linear array
composed of @ identical omnidirectional sensors with uniform sensor
spacing D. Assume there are d < m/2 narrowband deterministic
sources located at azimuthal angles 91, i=1,2,...,d, vhich are im-
pinging on the array as planar wavefronts and emitting signals whose
complex envelopes are denoted by ‘k(t)’ k=1,2,...,d. The signal
received at the tEE sensor is the superposition of d impinging wavefronts
plus zero-mean additive noise. Define ‘1(9k) to be the relative response

- of the ﬁEE sensor to the kth source, wg to be the center frequency of each
f_ of the spatial sources, c to be the speed of propagation of the plane
waves, and ni(t) to ba the additive noise of the tEE sensor. Then the

signal received at the LEE sensor can be expressed as

d
4 yi(6,0 = k-zl s,.(t) a,(8) +n,(t); 1=1,2,...,m.

Let

w
0
¢k .= D sin ek ; kel ,2,...,d. (4.1=-1)
When using a linear array of ommnidirectional sensors, the relative res-
ponse (senser 1 being the refarence sensor) of the iEE sensor to the

kEE source is given by

¢, (1-1)

8,(8) = e . (6.1=2)
‘ y1 (t,8) can then be rewritten as

d
1 y,(€.8) = k§1 5, (e) nxp[{jcak} (1-1) ]+, (¢)
{

d Wy

- kzl 5, (t) exp((§— D stn 8) (1-1)] + n (o). (4.1-3)
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The expected value of yi(:,g) yields xi(t.g) given by

xi(t »8) .E[yi(t 9]

d

= § s.(t) a,(8); 11,2,...,a. (4.1-4)
oy % 2%

Define the rectangular window to be

e -y == 4.1-5)
0 otherwise.

Given the number of sources d and the m averaged data points x 1(t.Q_),

a set of (d+l) vectors J_(n i3 created where the components of % are

the (m=d) values of the sequence
x (LR, (1-m+D); 0 = 1,2,...,d +1
n<i<m+n-d-1. (4.1-6)
In particular, (see Fig. 4.1)
X (x,(6,8), x)(6,0),. ., x (6.9}

g‘g - {xz(tnﬁ). xs(tog)o---" xm-d+1(='§)}

. (4.1-7)
gjﬂ- {2y (600 %, o (£48) 50000k (€,8) ],
The matrix pencil M-AN is then formed where
Tl ]
M o= 5_1‘ Xy oeoe Xy N = X Xy oo Xy (4.1-8)
| v l l ] J l l i
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Define the matrices

r “nmy
.n(el) an(ez) coe an(ed)
ah+1(61) an+1(92) . an+1(6d)
A = .
n .
a e.) s,) 8))
oh(med=1) 10 A g gy 2 cee &ipglyy 9 | (4.1-9)

Es=A = A (4.1-10)
n=1

and
° = di‘s [dll. dzzl""ddd]

jo i¢ j¢
= diag (e l. e 2,.-..0 d]- (4.1-11)

Also, define the vector

§? - [sl. sz....,sd].

It can be shown that the vector En can be expressed as

51‘ - An é; n.1.2’000td+1' (6.1‘12)

Observe from (4.1-2) that

- jo, (n=1)
2, (8) = (a8} 2 e ),

It follows from the above observation that

- (a=1) _ go(n=1)
A, = A0 E¢ .
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Consequently,
X =as=gp PP g (4.1-13)
- v -
Define
-
31 Sle see sle
J¢2 J(d-1)¢2
s, sze ceee 8,0
F = . . . ¢
’ t 3¢ j@@d=1¢
Sy s4e d cees 8@ d (4.1-14)
o —

The matrix M can then be expressed as

M = EF (4.1-15)

where E and F are given by (4.1-10) and (4.1-14), respectively.

In a similar manner N can be expressed as

N - E¢F. (4.1-186)

Using (4.1-15) and (4.1-16), the marrix pencil M-AN can be decom-
posed as

M - AN = E(I - A)F. (4.1-17)

This decomposition satisfies the requirements of the pencil
theorem. As long as the directions of arrival of the signals are
distinct and the separaction is less than half a wavelength, the
columns of E are linearly independent. Thus, the matrix E is of

rank d as required. By inspection, the matrix F is also of rank d.
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Hence, the values of A for which the rank of the matrix pencil M-AN

decreases by 1 are given by

-l -,

A, =d - Q s k= 1,2,...,d.

The values of A can be computed by means of a Grammian approach.
The rank reducing A's are the values of A for which the colummns of
the matrix pencil M-AN become dependent.

the voctorsz1 and Ej by

where (')H denotes the Hermitian operator. To check the dependence of

the set
{El-k_x;zi Ez-késl""x -Ax 1}'

construct the Grammian matrix

o
<X - AX,.X, ~AK,> <X, - AX,,X, - AX, >

K -AKy Ky - AKX el <Kp - MK - ARG

2 3

<X,- >‘.§3 '51'>‘£2>

2 <-x. -Ax ’E - @3> cee

2 =3'=2

L

Ty~ M0 &

A polynomial P()A) whose zeros are the rank reducing numbers can

be obtained frow the equation

det (G) = 0.

(4.1-18)

Define the inner product of

(4.1-19)

(4.1-20)

(6.1-21)

(4.1-22)



An alternative approach to the computation of the A is given
in section 2.2. It is shown that the rank reducing A's of M=AN are

also the generalized eigenvalues of the matrix pencil given by
iy - ey, (4.1-23)

Agala, once the G.E.'s of (4.1-23) are knowm, (2.1-2) can be used
to compute the DOA's.
In summary, given N snapshots and the number of sources d, the
following algorithm is proposed. It 1s assumed that the N sanap-
shots are taken at a rate sufficiently fast such that sk(t), k=1,2,...,d,

remain approximately constant over the N snapshots.
ALGORITEM |
Step 1: Given N snapshots, form the averaged data

N
~ 1
R, (€.3) =5 jzl v (e 08 1212, 0m. (4.1-24)

Step 2: Form the vectors 51. i=1,2,..., d+l, in (4.1-7) by approximating

Xi(t’_e_) with xi(t ng) .
Step 3: Form the matrices M and N whose columns gre given by 31 and
§i+1' i=1,2,..., d, respectively.
Step 4: Form the matrices MHH and MHN.

Step 5: Compute the Generalized eigeuvalues of

uiM - iy,
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These G.E.'s are known to be of the form
w

A = &xp {~3 = D sin 8 }. (4.1-25)

Step 6: Find the DOA's using the relation

A, = arcsia {j 5§5 k) ke 1,2,...,d. (4.1-26)
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4.1-1. Singular Signal Covariance Matrix Case:

An important property of the moving window approach 1is that
the proposed algorithm does not fail if the source signal covariance
matrix becomes singular. Singularity of the covariance matrix may
be dus to smart jammers using coherent signals, the presence
of multipath phenomenon, etc. To verify this property consider,

once again, the matrix pencil
M-AN = E(I-AP)F

where E, ¢ and F are given by (4.1-10), (4.1-11) and (4.1-14),
respectively. Note that the matrix E is of rank d as long as the
directions of arrival are distinct and the sensor separation is less
than A/2. The wmatrix F {s also of rank d even in the presence of
coherent sources. The diagonal matrix (I-Ad), whose iish-en:ry is
(lokej¢1). is of rank d provided A ¢ c-j¢1; i=1,2,...,d. Therefore
the requirements of the pencil theorem are satisfied even when the
signals are coherent. Because d rank reducing numbers exist, even in
the case of coherent sources, it follows that the moving window

approach is applicable even when the signal covariance matrix is

singular.

4.1-2 Zero-Msan Random Signals Case:

In the moving window approach presented in section II the sources
were assumed to be deterministic. Had they been random with zero
mean, xi(:.jp; is1,2,...,m would have been zero. The matrices M and

N in (4.1-8) would then be identially zero and would be of no use in

determining the DOA's. In this section it is shown that a modification
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of the woving window approach is applicable when the non-zerc zean
signal assumption does not hold.
Assume d random narrowband stationary sources with zero mean and

center frequency wy+ Given the vectors 11; {=1,2,..., d+1, where

X = (y (.80, 7, (68 0enes v (£.8)}

L = (7,008 588 anees Yo py, (6,00}

LTI AR CI P AVPLCH O PRITE A CH 20
The inner produce < °*,* > 1is now defined to be
<t 1> =BG L1 (4.1-27)

-

Define the matrices

anmy
<Yl. > <, 12> cee <L b e
<12 11> <3_2, YZ> <g_2, !d>
Ml - . (4.1-28)
| e Lk Lk
l— <Y2. Y1> <_Y_2, 12> von <Y2, xd>
<13. Y1> <13, 12> <Y3. xd>
14> <Gl Tgerdy J
L.
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q
1 1 eea 1
30, 39, o4
e e PN e
129, 324, 1204
A= e i e . e
. . (4.1-30)
. 1 (m=d=1)0 3 (m=d-1)0
ej(mpd 1)°1 e 2... [ d
L -
| and
. o 19, 304

¢ = diag [e y € sveey € ]

Also, define the vectors

§? = (8,1 8550000 8]

{
r Ei = [ni, n1+1""’°1+(m—d-1)] %.1-31)
It follows cthat Zi can be expressed as
y, = a0 UDs oy (4.1-32)
Using (4.1-32), the inner product <Y, , Z£> becomes
Y Xp> = <ad (k=l)g N a0 &1 S+N,>
p ~ e s 4 )R ® s 4 ).
%
) Assume the zero mean noise components with variance 02 to be uncorrela-

% ted from sensor to sensor and independent of the signals. Then




1
j (%R0, B (D) .
i el " (k-1 2
e(s%B P “Vs) + @0 Leke (4.1-33)
Let I, be defined as
0 1 0

”
-
.

.

. « . 1
LD . » - . L] . o
-L
Agsumi~gz che noise power 02 to be known, the matrix pencil M-AN is
defined as

MeAN = Qt, - (@-d)0°1) - A(N, - (u—d)oztl).

4
Observe that the uzﬁﬁ element of M s
1
E[§F QH(l—l) AFAQ(R-1)§J (4.1-34)
vhereas the kith element of N is
£(gBeB (41 B 57, (4.1-35)
Let us nov get a closed form axpression for the expectation given
ﬂ in (4.1-34). To obtainm this result we perform the matrix multiplica-
{ tions involved in (4.1=34).




-j¢1 -j(n-d-1)¢1 [ =]
1 e ceve @ 1. 1

o -} (m~d~-1)¢ i¢ jo

e 2 P 2 e l e d

AEA-

"3, -i(m-d~1)¢, "I (m=d-1)é, I (m=d-1)0,
1 e cece @ e e
L. . _J - ]

| ) )

o-d-1 J(¢Z-¢1)i w-d-1 § (¢ -9,)1

(m=d) L+] e l+)e
| 1=1 t=1
a-d-1 §(¢,~¢.)1 w—d~-1 §(¢ . =$,)1
1+ 5 o 127 (pu) vee 1¥) e 472
i=] ' i=1

acdel §(0.-0.)4  @=d-l §(d.-.)1
| B P M

) (m—d)
i=l i=1

b :




® » (p-w) e
*G-0I-

1=t
o( L 4+ 1)
N.A.-.v.- ..«..-... _-m.-

s { +D
1-p-u

o
Yo(-06- 10"
L

1-1 Vet
»( » + 1) a( ] w0
Poci-nt- 1(Pe-taye _-w.. Poc-ni- 1 e-"ooi _-w-.
-M«
oo a(p-w) ®( L4 + 1)
La-08- LZYTIRSY SRY LT WLFOY - 3
_m- v
wes o( ® + 1) n(p-u
_...-e.q- _A.o-~+vq 1-p-w _o..-...-

1

- "Wa-pwt
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L .
f
ﬁ. -
1ol -1
, aqp-w) "0 ( . Y » s » ) ® -
Peee-nt TR RO .-w-.. Toa-nf "sa-i- 1"y ..w.r.. sa-ne Tea-ni-
(-0 -t
_m. .m.
o . ")) o »(p-w) ( TR Y . .
Petr-mf :~ For e ~2.-.:- «2.-..2 :.9-.34 p-p-w _Z_L.: ~:.-=T
11 w.. ) s(p-=)
4+ ® [ -
( » + 1) F] e ( ® . 4 N i - _ ) _
v'#- "o -pe Pea-ns fea-nt- y('e-Teyy VP ta-mf ea-nf tGa-0t




+ (
1(Pe-20)1

a(p-w)Pe 4

o
Tet-me Zpa-0)(-

°
Yoc-nr Po(1-5)r-

Pocr-n¢
-mﬂ . ~N«
? +1) J a%s 4( ° +1)
-p-w Zeq-mf Pe(-n)I- 1Pe-10)0  1-p-w
_-m V p
( 3 +1 3 a's 4°°°
17e-Po)e 1-p-u Poci-mt CoCi-wf-
2 =¥
+ o(pme+( . 2 {+01n
OA.«IJV—. (- Gvﬂ 1-p-w
1=t p
o St ot et T
(-0~ ("0 y-p-w o(t-n)(
i=% ? o’s
+ ( s { +1) | PO
1St 1-pm Ceqomp OV

1
¢(3-mf

ol

° (p-w)'

o_u

" SV (-pn?

60

PR




SBE(L-1) LB, 4G-D) 5

3 k=08,

-1(2-1)¢, J(k-1)¢, w=d-1 3(¢,-0,)1
sl*sl(u-d) e +3.%s,_ e e (1 + Z

)
e
172 1=]

“3(-Deé,  3(k=1)d4 u-§-l j(¢d-¢1))+
e e

+... + 3, "s (1 +

1 °d {=1

=136, 3(k=1)d, -cyl-l k=20,
. .

]
s.*s @ (1 + e (¢1-°2)1) + sz*sz(m-d)e

21 =1

e +)

+...4+ 8, N (1 e ) +

2% ¢

i=1

=j(2-1)¢, j(k-1)¢ o=d-1  j(¢,~0)1 =3 (2-1)d, J(k-1)¢
*s o 3 La+ ] o V3, shs, e 3e 2

s v
3% fal 3%2

: J(@ -0 )1
a~d=-1 J(¢,-0 )1 -j(e=1)¢ j(k=1)¢ m=d~-1 d "3
z e 27 ) + oeee + s*s e 3 e d(1 + ) e )

(1 + 1%

1=l i=1

-1 (2=1)6, 1(k=1)8,
e

+shts e

m=d-1 J(&, - 01 « -1(2-1)¢, J(k=1)9,
d "1 ‘ e

(1 + e )+ 8.3, e
=1 d72

med=l 34, = 9,)4 . I k=98,
e .

(1 + Y+, .+ 'q’d(“‘d) e

i=]
The above equation can be written in a much more compact form using

the following sustitutions. Let

F =1+ e

D'E'd-l Jo, 41
pd 1=l .

Then

d d -3 (4=1% 3 (k=1)¢ o-d-1 (¢ -4 )1
=] ] sts e L BN "(1+2.P‘*)
q=l pe1 1P i=1
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gk . e o

P

o N

d 4, =j-De. I(k-1)o

- 2 Y ss e e

q=l pul P pa-

S = E(s*s ].
?4 qpPp

The expectation given in (4.1-22) can finally be expressed as

H(%-1)

e(sh

d d =j(2=D¢_  j(k-1)¢
- q Pp .
E.lpzl Spq . Fa
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P N

Q

e (1-p) f-

2 bd pa_ 1=d 1=b bd bg 12d1=b bd pa 159 1=b

“a-mr 483 1y ®4 4% 1 d 2 45 §

L - d(1-p)( P P ¢(1-pP)f P p

bd bg 139 1=b bd bd_ 79 1=b bd ba =9 1=b

P % 2 a's { { ¢, ®b 245 1 1 4945 ( 1

(i-p - ¢r P P of of- . H P P

bd pd_ =9 1=b bd ba 1=t 1=b ' =1 q=b

?6 s %% w N . .. ! o ..._ ._m .w w &.h —:.m w w
(1-p) - L $r- P P p

6B U9337JM 3q ued | ‘uorssaadxa syy3 8uysp
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bd ba V74

d °p ° a4 s |
d(1-0){ oo~ ]
.—IA—

Jbd bd

as 3

de1-p)t Peze-

beee-

bd ba 179 1=b > bd ba 124 1=P
»a s { { 4. a 1 s{
$ 4 %a-mrvy { M
—I& ml? ulﬁ —lmv
d bd bd  bd
b | b ] w w b 2 4 s w .A
PP - P D

sawodaq N Xjalew ‘(yz - 1°%) pue (€Z - 1Y) Buysn
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To simplify further define the matrices

1 !
i¢ ¢
Ju J%
j2¢ j2¢
Us= e 1 e 2
1d-De, 1(a-D)o,
e e
and
rzslxpxl $12F12
$21721 $92F52 -
v . . L]
Sa1Fa1 Sa2fa2 + -

h—

The matrix M can then be decomposed as
M= vot .

Similarly, the matrix N can be decomposed as

N = gvoiyH,

Thus, as required by the pencil thecrem, the matrix decomposition of

M=AN is given by
u-AN = ovut -xovey®

- o (1 -xeHob.
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104

j2¢
e d

Jid-1)¢
e d

.J

(4-1-37)

(4.1-38)

(4.1-39)

(4.1-40)




TRy

The matrices UV and UH are of rank d as long as the directions of arrival

of the signals are distinct. Hence, the values of A for which the rank
of the matrix pencil M-AN decreases by 1 are given by

j0,
Ai = e ;3 1=1,2,..., d.

Note that the matrices UV and UH are of rank d even when the sources are
coherent. Therefore, as in the nonzero-mean signal case, the apprcach does
not fail in the presence of coherent sources.

The above choices for M and N are not unique. To demonstrate the

flexibility of the pencil theorem, a second choice is now considered.

Let
H H H
ul E[St1 I + g_zgj +...4 gdgj 1 (4.1-41)
and
N-—E( H+YYH+ +Y Ya]-j-lz d+l. (4.1-42)
1 —Z.J -H LY d+l.-j » * g% ey . .
Let
1 k=1
) - (4.1-43)
k,2 0 otherwise.

Using (4.1-32), Hl and N become

BE(I-1 B, pes sBEU-D

M, = E[AsS s
coor ap (4705 GRBQTD R . azlll.sj,d-bl] (4.1~44)
N, = E(aes sPRUSD B p @ HFU-DE,

H,H(3-1) H (4.1-45)

oo ag@ g A]+UI[1-AJ,1].
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M= Ml - g I{l - 6j,d+1] (4.1-46)
and
2
N= Nl - o71{l - 6j.1]‘ (4.1-47)
Define the matrices
i 5
4 S=Ee(ss], (4.1-48)
] T =[S+ 39S +...4 ¢(d’1)31 (4.1-49)

(L+0 +...+ 004" Vys,

and

q | z = oW1 B, (4.1-50)
The nmatrix M can then be decomposed as

M = ATZ. (4.1-51)
Similarly, N can be decomposed as

N = A®T 2. (4.1-52)

Consequently, as required by the pencil theorem, the matrix
pencil M~-.N can be decomposed as

M - AN = A(I-A9)TZ . (4.1-53)

However, this approach fails when the sources are coherent since

} the matrix TZ is reduced in rank for this case.
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4.1-3 Prefiltering

The moving window approach yields correct results in absence

of noise assuming sufficient numerical accuracy. Therefore, it is

reasonable to expect that, if the SNR in the data can be improved

by prefiltering, then the performance of our approach would improve.

The question is, 'Does prefiltering prevent application of the matrix

pencil approach?" Ian this section we apply a frequency selective fil-

ter at each channel (see Fig. &
decomposition is not disturbed.

Assume that a filter with

+2) and show that the marrix pencil

impulse response h(t) is applied to
th

each channel. The filtered output of the {— channel is given by

T
ui(c’i} - I

o

where [0,T] is the observation

y.(T, 8), u,(t, &) becomes
1(%» 2y v (e, 2 T

,

“i(t og) -

¢ T

o

d
=1
k=1

T
+J
Q

yi(r._e_) h(t-1)dt
interval. Using the expression for

d
L s, (Da (3 )n(e-1) dt

‘o k=l

ni(T)h(t-T)dT
T
ai(ek) J sk(r)h(:-t) dt
]

ni(:)h(c-t)dr .
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Let

T
zk(t) - Jo sk(T)h(c-T)dT (4.1-56)

and

T
a (t) = J a, (t)h(c~-T)dT . (4.1=57)
u1 ° i

The expression for u, (t,8) can then be rewritten in terms of z,\t)

and nui(t) as

. d
u,(t,8) = ) z({t)a (8) +a_ (). (4.1-58)
i kel { 1k u,
Assuming the noise to be zero mean and the signals to be deter-

ministic, the expected value of ui(:,g) is given by

vi(t.i) - !tui(t._e_)]
3 8,)
= B( z. (t)a,( +n (o))
kel k i*k ui

d
- kZL zk(c)li(ek) + E[nhi(:)]. (4.1-59)

By using a rectangular window, a set of (d+l) vectors !t is

created. In particular,

T

!l - {vl(t’g)' vz(:ti)l"'l vrd(tlg)}
!‘2 - {vz(:ig)l vs(:ni)n-“: vm dll:tog)}
T

v

Virr = (Vgg) (68 vy (€28) 0eees valt:®l. (4.1.60)
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The matrix pencil M-AN is formed where

ol
I

Let

25w [2)(®),. . 2(0)].

The vector !1 can be expressad as

AR

where, as in (4.1-13), (4.1-10), (4.1~11),

- ge (47D
Ai EQ .

Define the matrix

B 10
zl(t) ‘1(‘)‘
J¢2
zz(:) zz(:)c
Fm
j¢d
zd(:) zd(c)c
L.

The matrices M and N can be expressed as

M= EF and N = EOF .

71

L2 (4.1-61)
¥ 1
-l
(4.1-62)
(4.1-63)
1@-1o, |
zl(:) e
J(d°1)¢z
zz(t) e
j(d-l)¢d
zd(t) e
u (4.1.64)
(4.1-65)
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Thus, the matrix pencil M-AN can be decomposed as required by the

pencil theorem. Specifically,

M - AN = EF ~ AE¢F

= E (I - \M)F . (4.1-66)

The matrix decomposition is, therefore, preserved without altering
the diagonsl matrix ¢ when multichannel filtering is added to the
moving window approach. As before, the rank reducing numbers of the
macrix pencil M-AN will still contain the necessary information to
estimate the DOA's.

The purpose for using a frequency selective filter in each channel
is to improve the SNR in the eatries of the matrices M and N. A simple
example is discussed next to illustrate the procedure. The power spectral
density P(w) of the noise is assumed to be constant up to sowe high cut-

off frequency w, such that

No/2 ~w_ < w<w
c c

P(w) = (4.1-67)

Assume the desired signal with the largest bandwidth to have bandwidth

AB. Let Ps denote the average power of the kth desired signal. Suppose

k
now that the received signals are put thru a rectangular bandpuass filter

with center frequency w, and bandwidth 4B. The uignal-to-noise ratio at the

input of the filter is given by

d
Yy P
k=l
Nw
0

'S

[

(SNR)i = (4.1-68)
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while the signal to noise ratio at the output of the filter is given by

d
21 P'k
(SM)O - EW- . (4.1-69)
-]

Define the signal-to-noise ratio improvement factor to be

(SNR) _

I= TEEES: . (4.1-70)

For the moving window operator and .the signals posed in this example,
the SNR of the entries in the matrices M and N are increased by the

factor

(4.1-71)

Elot

One can, therefore, improve the performance of the moving window
approach by prefiltering the signals. The filters introduced into
each channel do not disturb the matrix decomposition of M~AN as required
by the pencil theorem. The SNR is increased in the entries of M and N

and one can expect more accurate estimates of the DOA's.
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4.2 Generalization to a Ractangular Planar Array

The scheme proposed in section 4.1 also lends itself to a rectangular

planar array of sensors with uniform spacings dx’ dy in the X, Y direc-
tions respectively (See Fig. 4.3).

The angular locations of d sources are again to be estimated. These
estimates are to be obtained from measurements collected at the sensors
of a rectangular planar array. Assume this rectangular planar array
to have p sensors in the X direction and q sensors in the Y direction.
Observe that one can think of this array as being comprised of either
p columns of length q or q rows of length p. In this section ve view
the array as being composed of q rows of length p. To be able to
locate d sources for this case, q has to be greater than or equal to
(d+1) vhile p must be greater than or equal to d. Define $x and Ey
to be the unit vectors along the X and Y axes. The position of the

mng-l sensors is given by

Eun = (n—l)dxix + (n-l)dy£y° (4.2-1)

Let 15{ be the direction of propagation for the r:-Ell signal where
Er = cos Sr ix + sin Gr iy . (4.2-2)

The signal received at the mn-t-ll sensor can therefore be expressed as

d

2
e+ w0 et Fam oo

where Zom' k, denotes the inner product of the two vectors Zon and k.,
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Fig. 4.3 Rectangular planar array
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and nhn(t) denotes the additive noise at the mn-t-tl sensor. Using

(4.2-1) and (4.2~2), the inner product Z

—un. Er results in

. - . -+
Em_lsr-[(m—l)dri_k‘l'(nl)dyiy][Coaeré_‘ siner}v]

- (n—l)dx cos Br + (n-l)c:ly sin er. (4.2-4)

Inserting (4.2-4) into the expression for ym(:,g_), we obtain

d
ym(t,g) - rzl sr(:) exp [_1-21-11 (m—-l)dx cos er] exp [3 -Z-AE (n—l)dy sin St]

+ nm(t). (4.2-5)

For example, the signals at the sensors in the first row of the array
are given by

d

Yy, ) s () +a., ()
ns k% 11

d
Y, * tZL st(:) exp (3 2>‘—1T d, cos Gr] + n21(t)

. d
Yo - rzl s .(®) exp [3 50 (p-1) 4 cos 8 140, (O).

Assuming the signals to be deterministic and the noise to be zero mean,

then

x_ (6.8 = Ely (c,0)]

- § (t) (3 2L 4 (m-1) cos 8_] exp(j 2% d (n~1)sin 8_]. (4.2~6)
z..].sr expj)\xm cosrexpjxyn sin © 1. 2=
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Using these averaged measurements, q vectors are formed as given by

E‘f - [xll.(t.g), x21(t!g)""' xpl(t)g)]

T
52 - [xlz(:.g)’ xzz(tl_e_),o-o. xpz(tgg)]

T
xq - [xlq(t’g)l qu(t,g),..., qu(:.j._)]-

A matrix pencil M=AN is then generated from these vectors where

Let

and

—

I

51 52 ¢ §Q-1

o

b

||

5L X4

o

- 2T -
¢mr X dx (m-1)cos Sr
- 2
ar X cly (n-1) sin Sr .

Define the matrices

P
1 1
10 16
e 21 e 22
- 1 3
e 31 e 32
30, _ 16
e (p~-1)1 e (p-1)2
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¢ e ;x-q (6.2‘8)
-d
(4.2-9)
(4.2-10)
1
je
o 2d
1044 (46.2-11
e
jo,
e (p-l)fj




P

¢ = diag [dll' dzzyoo-p ddd]

vy jy 3y
= diag (e 21. e 22.....¢ Zd]. (6.2-12)
Also, define the vector
sT = (s,, s s.] (4.2-13)
2 1| 2’ LI ) [y d . .
It can be shown that the vector 51 can be expressed as
‘x'i = 30(1-1) §. H i'l.,Z...-,Q- (“-2-14)
Define .
B 3¥ ¥ oayr ]
21 (p-1)1
jv
22 jV(
p-1)2
s, s e . . s,e
. (4.2-15)
F - . L)
¥ ¥, _
sy sye ud ¢ . . s,e (p-1)d
; ——
The matrix M can then be expressed as
M = EF (4.2-16)
where E and F ave given by (4.2-11) and (4.2-15), respectively. In a
similar manner, N can be expressed as
N = EOF . (4.2-17)
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Using (4.2-16) and (4.2-17), the matrix pencil M-AN can be decomposed

M - AN = EF - AESF

= E(I - AP)F. (4.2~-18)

This decomposition satisfies the requirements of the pencil theorea.
Since, in general, M and N are rectangular matrices, either one of the
methods suggested in section 2.1 can be used to compute the generalized
eigenvalues. Observe that q generalized eigenvalues exist in this
case but only d of them will lie on the unit circle. These d G.E.'s are of

the form

- -3¢
Ai - di; = g 21 H 1-1'2.-co’do (6-2-19)

The remaining (q~d) G.E.'s are at the origin. Thus, once the d

nonzero G.E.'s are known, the DOA's can be calculated from

A
ei = arcsin {j '2—1Td—- ln Yzi} H 1‘1,2,....d¢ (4-2-20)
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4.3 Prony's Mathod .

In this section Prony's method [44] is presented in the context
of array signal processing. We then show that Prony's algorithm
is related to the moving rectangular window presented in section 4.1.

Prony's mathod is used for modeling data of equally spaced samples
by a linear combination of exponentials. The original procedure by
Baron de Prony fitted exactly d exponentials to 24 data measurements.
For the case inwvwhichonly anapproximate fit of d exponentials to a dats
set of m samples is desired, wvhere m > 2d, a least squares estimation
procedure is used. This procedure is called the extended Prony method.
The model

d Zr(1-1)
y,(c) = kzl s, (t)e + 0, (t); t=1,2,...,m (6.3-1)

is to be used in the extended Prony meathod for approximating the
measured data yl(:). yz(:)....,ym(c). The problem is to estimate the

parameters Z ; kel,2,...,d. This formulation is similar to that

k;
used in array signal processing where the problem is to eatimate the

angular locatious of d sources, sk(t) represents the complex envelopes of
the signals, and zk are purely imaginary parameters (the damping factors

are equal to zero). 2k is given by

W
= - § =2 (4.3-~2
2, =30, =313 D sin Sk

where w , ¢, D and Bk are defined in section 4.1. § is the square root
o

of minus one. Because of the dependence of the model on the angles ek.
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k=1,2,...,d, the messursments yi(:) are vritten as yi(:.g)- Thus, the
dual to equation (4.3-1) is

d

Iy (1-1
¥ (e,8) = kzl s, (t) e + () (4.3-3)

which is identical to (4.1-3). Assuming the signals to be deterministic
and the noise to be zero mean, the expected value of y, (t,8) yields x, (t,8)
given by

d h [ NP
xi(c,g) = 7 s, (t) e k(1-1) ; i=1,2,...,m. (4.3-4)

k=1

Finding the values of L k=l,2,...,d that minimize the squared error
is a difficult nonlinear least squares problem. An alternative suboptimum
solution was suggested by Prony.

A The key to the Prony technique is to recognize that (4.3-4) is the
homogeneous solution to a constant coefficient linear difference equation,
the form of which is developed next. Expanding the expression for xi(t.g)

we obtain

x;(c,8) = sl(t) exp[j¢1] (1-1) + s,(¢) exP[J¢2] (i-1)
+...t sd(t) exp[j¢d](i-1). (4.3=5)

Using (4.3-2), (4.3-5) becomes

(1-1) + (1-1)

x,(€,8) = s,(c) 2, s,(t) Z, 1es

(1-1) (4.3-6)
R sd(t) Zd .

Evaluating (4.3-6) at i=1,2,...,m, we obtain
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xl(t._e_) - ll(t) + az(t) +...4 sd(t)

xz(:,g) =s,(0)Z, + sz(c)zz+...+ ld(t) Z;

(6.3-7)

(m=1) (m-1)

(m=1)
1 + sz(t)zz +...+ ld(t) zcl .

x (£.8) s (8)2

Assume that the complex exponentials Zk. kwl,2,...,d of (4.3<2) are the
roots of the algebraic squation (also known as the prediction-error filter

polynomial) given by

d

2
81 + Bzz + 832 ...+ Bdﬂz

= 0 (4-3"8)

vhere Bd+1 is arbitrarily set equal to 1. In order to determine the

coafficients 81. Bz""’Bd' the first equation of (4.3-7) is multiplied

by Bl' the second one 1is multiplied by 82, and the dsE one is multiplied

by Bd and finally the (d+1)th is multiplied by 8 1. This results in

d+1

the set of equations

lel(c,g) - Blol(t) + Bs,(t) +.. .4 B184(F)

Bzxz(t,_e_) = stl(:)zl«'-ezsaz(t)z2 +oo0t std(:);:d

8% (ea8) = 8,8, (002,971 + 8,8, (032,4 w4 88 (0237
x,..(t,8) =3 (:)Zd + s (c)zd +...+ 8 (t:)zd

dvl™’ 1 1 2 r Y | d’
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Adding the above equations and using the fact that Zl. Zzn--.Z 4 are the

roots of (4.3-8), we have

B,x,(£.9) + 8,x,(c,2) +...+ X (80D =
d=1 d
s, () (8, + ByZ) *... + 8, Z7+ 2]
4ol (4.3-9)
+ sz(:) [Bl + Bzz2 + e+ dez + zd]
. 2
N d=-1 d
+ ’d(t)[al+822d+"'+sd zd +zd]-0.

Similarly, a set of (m~d-1) additional equations having the same form is
obtained by successively starting with the second, the third,..., the (m=-d)th

equation. For counvenience, we write xi(c.g) as x, in the following matrix

i
equation. The set of equations obtained following the procedure is written

in matrix form as

- r - -
rxl x, o« o Xiel Bl ro F
x, X4 S SV 82 0
x x . x L 8
3 4 d+3 3 = (v (4-3.10)
xrd xm-d-i-l . . x‘Il 1 0]
_ 4 L [
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(4.3-10), vhich comprises (m-d) equations in d unknowns, can be solved
by using a least squares approach. Having found the 81"’ the algebraic
aquation (4.3-8) is formed and its zeros computed. Once these zeros,
Zk; k=1,2,...,d, are known, exprassion (4.3-2) 1s used to obtain the
directions of arrival Gk. k=1,2,...,d.

The relationship between Prony's method and the moving rectangular
window technique is demonstrated. These methods are related in the
sense that the information needed to estimate the angular positions of the
d sources is obtained by examining the dependence/independence of a set
of vectors formed from the averaged vectors 51; i=1,2,...,d+1 given in
(4.1-7).

Recall that the moving window approach examines the dependence of the
set of vectors 51-&§1+1. i=1,2,...,d given in (4.1-20). On the other hand,
the algebraic equation (4.3-8), whose zeros are given by Zk. k=1,2,...,d in

(4.3-2), can be derived by examining the dependence of the vectors

51 ; i=1,2,...,d+1, such that
B X, +B8,X +...+4X, ., =0 (4.3-11)

In view of (4.1-10), (4.3-11) can be written as
BES + BE0S + ... + 6@ 5.0 (4.3-12)
or, equivalently,

B(8, + 8,0 + ... + 015 -0, (4.3.13)
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For equality to hold in (4.3-13), the matrix equation
B, + 8,0+ ouu * ol .o (4.3-14)

must be satisfied. With reference to (4.1-11), (4.3-14) can be

expanded into the following set of equations:

19, 140,

Bl + 82 e + ... +e 0

16, 340,

B1 + BZ e + ... +a 0

These equations are equivalent to the single polynomial equation

B+ B2+ ..+ A (4.3-15)

where the zeros of (4.3-15) are given by
30,
Zk = @ s k= 1,2,..., d.
Thus, Prony's algebraic equation (4.3-8) can also be derived by studying
the dependence of the set of vectors 51. i=1,2,...,d+l. As shown the
DOA's can be obtained from its zeros.
We conclude that Prony's algorithm and the moving window algorithm

are relatad in the sense that each utilizes independence of a set of

vectors formad from the vectors 51

; 1=1,2,...,4+1.
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4.4 Pisarenko's Algoritha

In this section another method, Pisarenko's algorithm [47], is
presented in the context of array signal processing. Pisarenko's
algorithm will also be shown to be related to the moving rectangular
window.

In Prony's method one is interested in obtaining the roots of
polynomial (4.3-8). Since we are interested in the roots of this

polynomial, the direction of the vector £ where

T
87 = (84 Bya oey By,

is the important criteria and not its magnitude. In the Prony method
we had set Bd+1 to 1 which constrains the £ vector to be on the hyper-

plane B =1,

d+1
The goal of Pisarenko's method is to constrain the tip of the § vector
to be on a hypersphere. Then no constraints are placed in any direction.
A unit radius is chosen for the hypersphere guch that
d+1 2
S B =1 (6.4-1)
i=]
Without constraining Bd+1 to l. Pisarenko solves the set of equations

(4.3-9). Given

EB =0, (4.4-2)

where




(6.4-2) is multipled by E to obtain
!t EHEQ -‘2' (4.4~4)
Let
v - g0, (4.4-5)
(4.4-6)

Using (4.4-5), (4.4-4) becoues
VB -2'

Note that V is a (d+1)x(d+l) matrix whose columns span a d-dimensional

In particular,

The smallest eigenvalue of V must therefore be equal to zero.
Solving (4.4-6) for § is equivalent to solving for the eigenvector

space.
(4.4-7)

corresponding to the smallest (zero) eigenvalue.

Vg = Asnallcst -

£

Based on this observation, Pisarenko proposed to obtain £ by comput-
ing the eigenvector of V corresponding to the smallest eigenvalue.

Once this eigenvector, which satisfies (4.4-1), is obtained, polynomial
(4.3-8) is formed and its zeros are computed. These zeros,
i=1,2,...,d, contain the necessary information to estimate the

jo
e i;
angular position of the d sources.
However, in practice, ES is not equal to zero but to some residual
(4.4-8)

H. J. Price [47] solved
Ef=¢

5]

for 8 by minimizing the sums of squares of the residuals, subject to




v

constraint (4.4~1). He showed that the vector £, which minimizes the
squares of the residual, is the eigenvector of V corresponding to the
minimum eigenvalue.

The relationship between Pisarenko's method and the moving rec-

tangular window is demonstrated. Let V.  be the jﬁ column of V. (4.4-6)

3
can then be rewritten as

Since the vectors V. ; j=1,2,..., d+l, are dependent, then there must

3
exist a set of constants Bi $ 0 such that (4.4~9) is verified. Thus

Pisarenko's algorithm examines the dependence of the set

Vs Tpaeeen b (4.4-10)

where -

T
V. = {<_x_jn_x_1>’ <£j’£2>""’ <£j|x“l>}
3 = 1,2,...,d%1. (4.4-11)

Recall that X 4

rectangular window mathod. Polynomial (4.3-8) can also be obtained

s J = 1,2,..., d+1, are the vectors used in the moving

by examining the dependence of the set (4.4-10). Making use of (4.1-13),

the i.j—tﬁ entry of V or V,, can be axpressed as

1]
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gy

v = <X, , §ﬂ>

1j

= <E$

-]
(1-1)

§' E@(j-l) §>

B GHU-D gR o o (eD) ¢

Using (4.4~12), 11 can be written as

<

el

Define the matrix R to be

-
1 3
-3¢ -3¢
« 3% » ~1%,
Sle Sze
R=
* 'jd¢1 ® -id¢
sxe 52 e
L.

-
where (°*) denotes the complex conjugate. The vector

in terms of R as
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st o g oU-D

2

(17}

jn

s H@gR (U= ¢

nnd

s*e-jdﬁd
d

v,

(4.4-1.

can be expressed



A

Ly

v =nepel™s, (4.4-13)

Utilizing (4.4~13) in (4.4-9), we obtain

H

B RETES+B, RETESS+ ...

H , o(d-1) H . ,(d)g o _
+ ByRE EO S+B REES TS0 (4.4-14)

or

R BE [BiT + B,% +...+ Bd+1¢(d)].§ = 0. (4.4-15)

For this equality to hold for an arbitrary choice of S it must be true

that
Bll + 82 d +...+ Bd+1¢ 0. (4.4-16)

Using (4.1-11), this matrix equation can be expanded into

39,

jd¢1
8l + 82 e + ...+ 8 -

e 0

d+l
19,

81+Bze + ... +8B e

8oy
d+1

0 (4.4~17)

. ¢ jd¢
B1 + 62 e d + ... +8 d d

This set of equation is equivalent to the single polynomial equation.
d
81 + BZZ + ...+ Bd+1 2" =0 (4.4-18)

where the zeros of (4.4-18) are given by
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10,
Zi - g H 1.1’2’0-0, do (A-a-’.g)

Indeed polynomial (4.4-18) which was derived by analyzing the dependence
of the set (4.4-10) is the same as the polynomial given in (4.3-8).
One can then conclude that Pisarenko's algorithm and the moving
window algorithm are related in the sense that each utilizes the depen-
dence/independence of a set of vectors formed from the same vectors

51; 1-1’2’ooo,d+1o
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4.5 Comparative Performance

In this section the comparative performance of the moving
window, Prony, and Pisarenko methods is evaluated by means of
computer simulation.

The model used for the simulation consists of two plane waves
(d=2) arising from two coherent point sources which are incident on
a linear array consisting of eight (w=8) equally spaced seunsor
elemants. The sources are assumed to be located ac &, = 18° and
92 = 22°. The angular separation, A6 = 4°, is less than one fourth
of the array's Rayleigh angular resolution which, for the given array,
is about % < 0.28 radians = 16.3 degrees. Assume N snapshots

are available for processing where the 33 snapshot is given by

RN CHTI NP N 1%

For a given snapshot, the measurement at the 1.53 sensor is composed

of signal and noise components as defined in (4.1-3). Hence,

d w
y (c.8) = kgl s, (t) exp {j?o D(1-1) sin ek} +a, (t)

d
- kzl 5, (t) exp (4 211”2- (1-1) stn 8.} + a (8)

vhere ni(r.) is generatad in the computer simulation as a zero mean,
unit variance, wvhite complex Gaussian noise. The signal portion is

genersted using the expression
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kil lk(t) exp {} Zw% (i-1) sin ek}; i=1,2,...,m
where D = A\/2, d = 2, 91 = 18°, 92 = 22° and m = 8. It is assumed
that the N snapshots are taken at a rate sufficiently fast such that
lk(t); k=1,2 remain approximately constant over the N snapshots,
Assuming the 2 sources to be of equal power with sl(:) = sz(t) - s,
the signal-to-noise ratio SNR is defined to be

P.
SKR = %
Pn

vhere Ps is the signal power at sensor 1 and Pn is the noise power

P 2 2
sug-;ﬁ.ﬂ.ﬂ...z.li]_,
a

Zlolz o?

The cases considered in the simulation are tabulated in Table 1.

SNR(dB) Is|
30 22.36
25 12.57
20 7.07
10 2.24

TABLE 1

Using the source and receiver model as described above, the moving

window, Prony, and Pisarenko methods were used to estimate 61 and 32.
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Quantitative results of the three methods are given in Tables 2

and 3. 10 Monte Carlo runs of 500 snapshots each were performed for

each SNR in the range of 10 - 30 dB. It can be observed from Table 2

that, at large enough SNR, the angular positions of the two sources

are nicely resolved. At lower SNR, two sources are still resolved

but the bias and variance of the estimates of 91 and 92 are larger.

Observe that the moving window using generalized eigenvalues performs

better than the Gram approach.

An unexpected result is that the Prony method and the moving

window method using the generalized eigenvalue approach have identical

performance. This is explained below by showing that identical equa-

tions are solved in both techniques. Let

= (X Xy een

X = {xp x5 ooe s

53 - {13. Xys voe s

Given d = 2 and the vectors X,, X,, and

the equation

P
x X

Lo

The least squares solution of the above

o ——D>
(2]
~N

is given by
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xs}.

X, the Prony method leads to

set of linear equations

g
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- - _

et /A ) IR s
29 52 i ® - X3

— X l [ 0—52_;1

_ Je .J L ]

(4.5=2)

Recall that the linear product of two vectors X and X, is defined to be

X 5y "5-12‘51 =X,

Using (4.5-3), (4.5-2) can be rewritten as

Utilizing Cramer's rule, oy and a, are found to be
o - 13X "% ¥y,

L X %5, =%, X,

and
R % T ¥ Sl € B 1
2 X XXX

This results in the quadratic equation

2
al AT+ azx +1=0.

Substituting for a, and ay and simplifying yields the equation

97

(4.5-3)

(4.5=4)



(X19%5; = 3% 2”‘ + (XyXp ) = XK A+ Xy Xy = XpoXp ) = 0. (4.5-5)

The equation in the moving window approach using generalized

sigenvalues i3 now developed. For this, the matrix pencil

1ot 1 r‘

M=-AN= X X -

l—l Iz %
- - 1
is first formed. M=AN is then ptenultiplicd by Ha yielding
5, X2 S VIRST
v-ndly - -
i X X2 X3 -

The generalized eigenvalues are the solution to

X1 = My X, =A%,
[-ny| o
X = Xy, X)y = AX,,
- (X% - Xy P 4 (X)) = XK n + Ry Ky = KX ) = 0 (4.526)

Note that (4.5-5) and (4.5-6) are identical equations. Consequently,

the two algorithms produce the same results.

From Table 2 it is seen that the bias and variance of all three
nethods is large at 10 dB. To investigate whether 61 and 92 can be

better estimated using additional snapshots, 10 Monte Carlo runs were
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performed vith the number of snapshots increased from 500 to 5000
vhile SNR was aaintained at 10 dB. The results are shown in Table 4.
As the number of snapshots is increased, the accuracy of the estimates
for both angles also increases. Correspondingly, the variance given
in Table 5 decreases as the number of snapshots increase. The reason
for this improvement is the well known fact that the variance of the

unbiased estimator

decreases as l/N thus yielding better results as N increases.

Tables 6 and 7 sho; the performance of these methods as A6 is
successively decreased to 3°, 2° and 1°. For sufficiently large SNR,
the resolution capabilities of these methods compare well. Note
that when 46 is 1°, all methods fail to resolve the 2 sources. 1In
this case, only one source i{s observed, and the estimated location of
this sourcs has a large bias and variance.

Tables 8 and 9 give the results of the three methods as the sources
are kept 4° apart and are moved from broadside to endfire of the array.
Toward the endfire of the array, DOA estimation becomes worse. This
is because the gain of the array is greatly reduced at endfire.

Computer simulations were also carried out to investigate the
performance of the moving window as given in section 4.1-2 vhere the
signals are assumed to be random with zero mean. Its performance {s

compared to that of the ESPRIT algorithm under similar conditions. The
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PRONY PISARENKO MOVING WINDOW
GRAM GEN. EIGEN.

8,.8,] 8, 5, |3, 5, |8, 5,8, 3,

0,4 | .02 4.05 .05 4.02] -.30 4.39 | .02 4.05

8,12} 7.89 11.90} 7.93 11.87] 7.56 12,24} 7.89 11.90
18,221 18.02 22.01| 18.06 21.97] 17.62 22.43 | 18.02 22.01
28,321 27.71 31.80| 27.76 31.76f 27.07 32.481 27.71 31.80
36,40 .35.97 39.99} 36.02 39.94] 34.86 41.18) 35.97 39.99
40,44 39.97 43.91] 40.05 43.82| 38.50 45,52 39.97 43.91
46,50 45.39 49.711 45.41 49.701 43.12 52.32] 45.39 49.71
54,58 | 53.79 56.47} 53.16 57.22t748.45 63.35] 53.79 56.47
62,66} 61.53 65.51] 61.55 65.6J ~10.99 64.33] 61.53 65.51
70,741 7.06 74.181 24.39 74.01 -52.16 54.61 7.06 74,18
74,78 | -4.68 75.851-8.32 75.87 =45.97 52.14 -4.68 75.85
82,86 | ~7.65 83.67|~18.71 83.67 -35.04 41.04 -7.65 83.67
86,90 | 3.68° 87.171=4.77 87.14 -35.93 40.18 3.68 87.17
Table 8: Mean of 91 and 62 as the sources move from broadside to

endfire (500 snapshots, 10 Monte Carloc runs, 30 dB).
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PRONY PISARENKO MOVING WINDOW
GRAM GEN. EIGEN.

50 8,]o,’ SN %' | ¢,° 9,°19,° %
0.4 | .08 .08 | .08 .08 | .11 .10] .08 .08
8,12 | .03 034 .06 .03 | .06 .04} .03 .03
18,22 | .10 09 | .11 .09 | .09 .10 .10 .09
28,32 | .07 .05 | .07 .06 | .16 .09} .07 .08
36,40 | .13 6| .16 g6 | .3 .53 .13 14
40,44 | .11 28 | .13 36 | .47 1.02[ .11 .28
46,50 |1.03 47 | .90 .55 | 1.75 2.47]1.03 .47
54,58 |3.01 .29 |1.80 .26 | 5.18 9.2 3.01 .29
62,66 [6.07 4.21 |4.46 3.75 [3852.61 237.12]6.07 4.21
70,74 |3025.31 26.68 [3591.77 11.28 | 505.57 95.99 [3025.31  26.68
74,78 |1277.36 .0006 |2005.98 .011 | 821.72 504.60[1277.36  .0006
82,86 | 318.77 .0006 | 835.92 .001 |1454.45 1508.38{ 318.77  .0006
86,90 | 447.56 .003 |1166.39 .005 |1444.15 1557.80| 447.56  .003
Table 9:

DO

variance of 81 and 92 as the sources move from broadside to

endfire (500 snapshots, 10 Monte Carlo runms, 30 dB).
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model used for simulation is the same as the one described above
except that the sources are nov made inccherent. The reason for
this is che ESPRIT algorith: fails for coherent sources.
Making the sources incoherent gives us a fair comparison of the
moving window and ESPRIT. The signals are generated by using the
exprassion.

2
kzl lk(t) exp {J Zﬂ% (i-1) sin ek} exp (3 ak}.

and the noise ia generated as before. Two cases wereinvestigated in this
similation. In case 1, lk(t) is kept coustant and Q, and a, are inde-
pendent random phase angles uniforuly dist;ibutod in the interval [-w,n].
In case 2, sk(t) is random with s Rayleigh discribution independent of
a

1 and uz, vhile a, and az are still independent randoa phase angles

1
uniformly distributed in the interval [-m, 7]. Tables 10 and 11 show
the results for case 1, and Tables 12 and 13 show those of case 2.

The matrices M and N for the moving window are formed as explained
in section 4.1-2. Por the ESPRIT algorithm, the first subarray is
formed of the first, third, fifth and seventh sensors while the second
subarray is formed of the second, fourth, sixth and eighth sensors of
the linear array. These two subarrays are used to form the covariance
matrices ESPRIT calls for. For every Monte Carlo run, the matrix

entries for both techniques were computed from 100 snapshots. 50

Monte Carlo runs were performed using independent data sets.
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One can conclude from table 10 - 13 that the moving window
i compares favorably to ESPRIT. The bias {s slightly smaller for

the moving window technique while its variance is substantially smaller.

- o
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L amndi

CHAPTER 5
CONCLUSION AND SUGGESTIONS

FOR FUTURE RESEARCH

5.1 Comnclusion

Determination of the angular locations of d sources using an
array of s sensors was the main concern of this raSearch. The
signals generated by the d sources are assumead to be narrowband.

Uatil recently the methods developed to deal with this problea
were classified as search procedures because either

1) the algoritha solves a constrained optimization probleam for
each direction of look,

2) a beam is formed and its energy computed for each direction
of look, or

3) a spatial correlation matrix is formed. The array manifold
is then searched for the values of a(8) which minimize a predefined
expression.

Although thess search techniques may have superresolution capabil-
ities, they ars, nevertheless, compuationally very complex. Because
of this complexity, nonsearch procedures have been proposed. These
algorithms have the following advantages over search procedures:

1) They are computationally less complex because a search pro-
cedure is not needed.

2) They do not require knowledge of element characteristics.

3) They do not require a calibration of the array. This

completely eliminates need for storage of the array manifold which
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can be very large for multidimensional problems.

4) They may not require knowledge of the array geometry, as is
the case with ESPRIT.

A generalized formulation is proposed for these nonsearch procedures.
This formulstion cousists of forming a matrix pencil M-AN and computing
its rank reducing numbers. The rank reducing numbers are the generalized
eigenvalues for the case of a iquato matrix pencil. For the case of
a rectangular matrix pencil, the rank reducing numbers can be obtained
by either using the Grammian approach or by transforming the problem into
a gensralized eigenvalue problem. The pencil theorem given in chapter
2 establishes the relationship between the rank reducing values of A
and a functional form t(oi) wvhich is a nonlinear function of the
aggulnr position of the tEE source; i=l,2,...,d. The form of £(¢i) is
determined by the operators applied to the msasurements.

Three different operators are presented in this dissertation: the
phase delay operator, the summation operator, and the moving window
operator. All three methods are analyzed and formulated in terms of
the generalized formulation. The matrix decomposition required by
the pencil theorem heps to explain why ESPRIT fails for coherent sig-
nals. In particular, the rank requirement fails when the signals are
coherent. The moving window and the summation operator were shown not
to violate any of the pencil theorem requirements and thus do not fail
for coherent signals.

The flexibility of the matrix pencil approach allowed us to formu-

lata the moving window operator for the case of deterministic signals as
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well as for the zero mean random case. Two well known methods in the
fiald of system identification, namely Prony's and Pisarenko's methods,
are applied to the problem of direction finding. Their relationship
to the moving window technique is demonstrated. All three techniques
extract the information about the angular locations of the d signals
by examining the dependence/independence of a set of vectors. Each
technique derives the set of vectors as a transformation of the same

(d + 1) vectors.

The nonsearch methods presented in this research are capable
of making high resolution DOA estimation. These methods have great
potential because of their computational simplicity. They are easy
and cheap to ilplnn.n:..

As one develops an idea, there are alvays new questions and prob-
lems that arise in the process. In the following section suggestions

are mads for future research.

5.2 Suggestiouns for Future Research

The generalized approach i{s, as its name indicates, a very general
concept. The rank reducing numbers, Al’ Az...., Xd. of the matrix
pencil M=AN are related to the directions of arrival thru a functional
form that depends on the operator applied to the measurements. The
possibility of using operators other than those discussed in this
dissertation remains to be explored.

The formulation of different methods in terms of a common frame-

work has the advantage that their performance can be compared within
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the generalized approach. For example, suppose two methods are formu-
lated in terms of the matrix pencil. Processing of the matrix pencil
is identical for both methods. However, the entries in the pencil will
differ. A statistical analysis of these entries can then be carried
out. The method whose entries have smaller bias and smaller variance
will perform better.

We know from the design of FIR filters that different windows have
different characteristics. The window used in chapter 4 is a rectangular
windov. It can very easily be showmn that any shape window would work.
The question 1s, "How do differently shaped windows affect the per-
formance of the moving window operator?"

It vas shown in section 4.1-) that prefiltering can be incliuded into
these nonsearch procedures without disturbing the matrix decomposition
required by the pencil theorem. An important issue concerning pre-
filtering is the design of a suitable filter. If one knew enough about
the noise and the desired signal, one would be able to build a filter
to improve the signal-to-uoise ratio and, therefore, improve the per-
foruance of the technique.

The signals in direction finding, spectral estimation, system identi-
fication, and adaptive srrays can all be modeled as a sum of exponentials.
Consequently, effort should be devoted to applying the results of this
disertation to those other areass.

Another issue that should be given consideration is sensor coupling.
The effect of sensor coupling has not been discussed in the open liter-
ature on direction finding. Investigation into this problem might help

improve existing algorithms.
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The generalized framework developed in this research relies
oa the computation of the rank reducing numbers of a matrix pencil
M-AN. An efficient algorithm (48] based on the Schur decomposition
has been developed for the case of a square matrix pencil. However,
for the case of a rectangular pencil, no efficient algorithm has been
shown for explicitly computing the coefficients of the polynomial
P(\) = det (G) = 0. Preliminary work suggests that such an approach

is possible [42, 47].

116




— e -

(1]

(2]

(31

n . et g

(4]

(5]

(6]

(7]

(81

(9]

(10]

(11]

(12}

(13]

[14]

REFERENCES

D. Middleton, "Multidimensional detection and extraction
of signals in random media," Proc. IEEE, Vol. 58, No.5,

M. A. Gallop and L. W. Nolte, '"Bayesian detection of targets

of unknown location" IEEE Trans. Aerospace and Electronic Systems,
Vol.1l0, pp.429-435, July 1974.

J. F. Béhme, "On parametric methods for array processing,"”
Proceedings of EUSIPCO, Erlangen, W. Germany, pp.637-644, 1983.

A. Van den Bos, "Recent developments in least square model fitting,"

Undervater Acoustics and Signal Processing (L. Bjgrné, Ed.,),
Dordrecht Reidel, 1980.

U. Nickel, "Super-resolution using an active antenna array,"
Proc. IEEE Int. Conf. Radar, London, U.K., pp.87-91, October 1982.

J. F. BShme, "Estimation of source parameters by maximum likelihood
and nonlinear regression,” Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, San-Diego, CA, pp.731-734, March 1984.

J. M. Chambers, "Fitting nonlinear models: numerical techniques,"
Biometrica, Vol. 60, pp.l-13, 1973,

G. H. Golub and A. Pereyra, "The differentiation of pseudo-inverses
and nonlinear least square problems whose variables separate,"”
Siam J. Numer. Anal. Vol. 10, pp. 413-432, April 1973.

H. Wang, "Multiple target direction finding," Ph.D. Dissertation,
The University of Minnesota, July 1985.

D. H. Johnson, "The Application of spectral estimation methods to
bearing estimation problems,"” Proc. IEEE, Vol.70, No.9, pp.l1018-1028,
Sept. 1982.

D. E. Dudgeon, "Fundsmental of digital array processing," Proc.
Im. Vol. 65. N0.6, PP. 898-906. June 19770

S. R. DaGraaf and D. H. Johnson, "Capability of array processing
algorithms to resolve source bearings," Statistical Signal Processing
(Ed. E. J. Vegman and J. G. Smith), 1984.

J. P. Burg, "Three-dimensional filtering with an array of seismo-
meters,” Geophysics, vol. 29, No.5, pp. 693-713, October 1964.

J. Capon, "High resolution frequency-wavenumber spectrum analysis,"
Proc. Im. V01.57, No.al PP-U‘OS‘I‘IS. MS‘ 1969-

117




(15]

[16]

(17}

(18]

[19]

(20]

(21]

(22)

(23]

[24]

(25]

[26]

(27]

J. I. Makhoul, "Linear prediction: a tutorial review,"”
Proc. IEEE, vol. 63, pp.561-580, April 1975.

T. J. Ulrych and R. W. Clayton, "Tims series modeling

and maximum entropy," J. Phys. Earth Planet. Inter., Vol.l2,
pp. 188-200, 1976.

D. Tufts snd R. Kumaresan, "Frequency estimation of multiple
sinusoids: making linear prediction like maximum likelihood,"
Proc. IEEE, Vol. 70, pp. 975-990, September 1982.

J. P. Burg, "Maximum entropy spectral analysis,” Ph.D. Dissertation
Dept. Geophysics, Stanford Univ., Stanford, CA, 1967.

S. W. Lang and J. H. McClellan, "Spectral estimation for sensor
arrays,” IEEE Trans. on Acoustics, Speech and Signal Processing,
Vol. 31, pp.34 » April 1983.

R. Kumaresan, "Estimating the parameters of exponentially damped
or undamped sinusoidal signals in noise,” Ph.D. Dissertation,
University of Rhode Island, 1982.

P. R. Krishnaish, Ed., "™Multivariste analysis," North-Bolland
Publishing Company, 1980.

H. Hoteling, "Analysis of a complex of statistical variables into
principal components,”" J. Educ. Psych. Vol. 24, pp.417-441, September
1933.

C. R. Rao, "The use and interpretation of principal component
analysis in applied research," Sankhya Ser. A. 26, 329-358, 1964.

V. F. Pisarenko, "Retrieval of harmonics from a covariance function,"
G‘c!h!!ic. Jo l. ”troﬂ‘ SOCO' 33. PP-376-366. Sthllblr 1973-

A. Cantoni and L. C. Godara, "Resolving the directions of sources
in a correlated field incident on an array,"” J. of Acoust. Soc.
_‘&_’ 67(‘). ”01267‘1255. Aptil 1980-

N. L. Owsley, "A recent trend in adaptive signal processing for
sansor arrays: constrained adaptatiom,” Si Processi
(Ed. J.W.R. Griffiths et al.), Academic Press, New York, 1976.

W. S. Liggett, "Passive Sonar: fitting wmodels to multiple time

series,” Signal processing (Ed., J.W.R. Griffiths et al)
Acadenic Press, Newv York, 1973.

118



-y

- P

A L e

(28]

{29]

(30]

(31]

(32)

(33]

(34]

(35]

(36]

(37]

(38]

(39]

S. 8. Reddi, "Multiple Source location - A digital approach,”
IEER Trans. on Aero. and Elec. Syst., Vol. AIS-15, No.l,

PP o= s JADuATY .

R. 0. Schaidt, "Multiple emitter location and signal parameter
estimation," Proc. RADC, Spectral Estimation Workshop, Rome,
H.Y.. ”02‘3.!3!. Oct. 1979¢

G. Bienvenu, "Influeace of the spatial cohersnce of the back-
ground noise on high resolution passive mechods,” Proc. IEEE
JZCASSP, Washington, D.C., pp.306-309, April 1979.

A. Psulraj and T. Kailath, "Eigenstructure methods for direction
of arrival estimation in the presence of unknown noise fields,"

IEEE Irans. om Acoustics, SFceh and Signal Processing, vol.
pat o XY iy PP. » february .
M. Wax and T. Kailath, "Detection of signals by information

theoretic criteria,” IEER Trans. on Acoustics, Speech, and Signal
h“"'ts. 'Ochssr-33, 30.2. ”03‘7-392. ‘Pm 19‘ .

S. Bartlett, "A note on the multiplying factors for various
X approximations,” J. Roy. Stat. Soc., Ser. B., Vol. 16,

D. N. Lawley, "Tests of significance of the latent roots of the
covariance and correlation matrices,” Biometrica, Vol. 43, pp.l128-
136, 1956.

H. Akaike, "Information theory and an extension of the maximum
likelihood," Proc. 2ad Int. Symp. Inform. Theory, Suppl.
Problems of Control and Inf. Theory, pp. 267-281, 1973.

R. 0. Schmidt, "A eignal subspace approach to multiple emitter
location and spectral estimation,” Ph.D. Dissertation, Stanford
University, Stanford, CA, 1981.

A. Paulraj, R. Roy and T. Kailath, "Subspace rotation approach
to direction of arrival estimation,"” Nineteenth Annual Asilomar
Conference, Pacific Grove, Cal., Nov. 1985.

H. Ouibrahim, D. D. Weiner and T. K. Sarkar, "Direction finding
using the moving window operator," IEEL Montech '86 Conference,
Montreal, Quebec, Canada, Sept. 29 - Oct 1, 1986.

H. Ouibrahim, D. D. Weiner and T. K. Sarkar, "A generalized approach
to direction finding," MILCOM '86 Conference, Monterey, CA, Oct.l1986.

119




[40]

(41]

(42]

[43]

(44]

[45]

(a6]

[47]

[48]

H. Wang and M. Kaveh, "Coherent signal-subspace processing for
the dataction and estimation of angles of arrival of multiple
wideband sources,"” IEEE Trans. on Acoustics, Speech, and
Signal Processing, Vol. ASSP-33, ¥o.4, pp.823-831, Aug. 198S5.

G. H. Golub and C. ¥. Van Loan, "Matrix computation,” Baltimore
Maryland: The John Hopkins University Press, .

V. K. Jain, "On systea identification and approximation,"
ring Research Report No.S$S-I1, Florida State University,
1970.

R. Prony, "Essai experimental et analytique sur leslois de ls
dilatabilite de fluides elastiques et sur celle de la force
expansive ds la vapeur de 1'alkool a differentes temperatures,”
J. L'ecole Polytech, Paris, vol.l, no.2, pp.24=76, 1795. ’

M. Van Blaricum and R. Mittra, "Techniques for extracting the
complex resonances of a systes directly from its transient
responss,” IEER Trans. Antennss Prop. Vol. AP~23, No.6, Mov. 1975.

H. J. Price, "An improved Prony algorithm for expomential analysis,"”
Mathematics Notes, Note 59, Mission Research Corporation,
Albuquerque, New Maxico, Nov. 1975.

A. S. Boussholder, "On Prony's method of fitting exponsatial decay
curves and msultiple-hit survival curves, "Osk Ridge National
Laboratory, ORNL-455, Oak Ridge, Tennessee, September 1949.

G. L. Thompson and R. L. Weil, '"Reducing the rank of (A- B),"

American Mathematical Society, Proceedings, pp.549-554, December
1970.

User's Manual, IMSL Library, Problem-Solving Software System
for Mathemati Statistical Fortran Programming,
Bdition 9.2, Nov. 1984.

120



